11.00 \% x + 15.00 \% ( x + 900 ) = 213
Solve for x
x=300
Graph
Share
Copied to clipboard
\frac{11}{100}x+\frac{3}{20}\left(x+900\right)=213
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{11}{100}x+\frac{3}{20}x+\frac{3}{20}\times 900=213
Use the distributive property to multiply \frac{3}{20} by x+900.
\frac{11}{100}x+\frac{3}{20}x+\frac{3\times 900}{20}=213
Express \frac{3}{20}\times 900 as a single fraction.
\frac{11}{100}x+\frac{3}{20}x+\frac{2700}{20}=213
Multiply 3 and 900 to get 2700.
\frac{11}{100}x+\frac{3}{20}x+135=213
Divide 2700 by 20 to get 135.
\frac{13}{50}x+135=213
Combine \frac{11}{100}x and \frac{3}{20}x to get \frac{13}{50}x.
\frac{13}{50}x=213-135
Subtract 135 from both sides.
\frac{13}{50}x=78
Subtract 135 from 213 to get 78.
x=78\times \frac{50}{13}
Multiply both sides by \frac{50}{13}, the reciprocal of \frac{13}{50}.
x=\frac{78\times 50}{13}
Express 78\times \frac{50}{13} as a single fraction.
x=\frac{3900}{13}
Multiply 78 and 50 to get 3900.
x=300
Divide 3900 by 13 to get 300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}