Solve for x
x = \frac{10 \sqrt{51} + 100}{49} \approx 3.4982507
x=\frac{100-10\sqrt{51}}{49}\approx 0.583381953
Graph
Share
Copied to clipboard
1+20x-4.9x^{2}=11
Swap sides so that all variable terms are on the left hand side.
1+20x-4.9x^{2}-11=0
Subtract 11 from both sides.
-10+20x-4.9x^{2}=0
Subtract 11 from 1 to get -10.
-4.9x^{2}+20x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-4.9\right)\left(-10\right)}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 20 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-4.9\right)\left(-10\right)}}{2\left(-4.9\right)}
Square 20.
x=\frac{-20±\sqrt{400+19.6\left(-10\right)}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
x=\frac{-20±\sqrt{400-196}}{2\left(-4.9\right)}
Multiply 19.6 times -10.
x=\frac{-20±\sqrt{204}}{2\left(-4.9\right)}
Add 400 to -196.
x=\frac{-20±2\sqrt{51}}{2\left(-4.9\right)}
Take the square root of 204.
x=\frac{-20±2\sqrt{51}}{-9.8}
Multiply 2 times -4.9.
x=\frac{2\sqrt{51}-20}{-9.8}
Now solve the equation x=\frac{-20±2\sqrt{51}}{-9.8} when ± is plus. Add -20 to 2\sqrt{51}.
x=\frac{100-10\sqrt{51}}{49}
Divide -20+2\sqrt{51} by -9.8 by multiplying -20+2\sqrt{51} by the reciprocal of -9.8.
x=\frac{-2\sqrt{51}-20}{-9.8}
Now solve the equation x=\frac{-20±2\sqrt{51}}{-9.8} when ± is minus. Subtract 2\sqrt{51} from -20.
x=\frac{10\sqrt{51}+100}{49}
Divide -20-2\sqrt{51} by -9.8 by multiplying -20-2\sqrt{51} by the reciprocal of -9.8.
x=\frac{100-10\sqrt{51}}{49} x=\frac{10\sqrt{51}+100}{49}
The equation is now solved.
1+20x-4.9x^{2}=11
Swap sides so that all variable terms are on the left hand side.
20x-4.9x^{2}=11-1
Subtract 1 from both sides.
20x-4.9x^{2}=10
Subtract 1 from 11 to get 10.
-4.9x^{2}+20x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4.9x^{2}+20x}{-4.9}=\frac{10}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{20}{-4.9}x=\frac{10}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
x^{2}-\frac{200}{49}x=\frac{10}{-4.9}
Divide 20 by -4.9 by multiplying 20 by the reciprocal of -4.9.
x^{2}-\frac{200}{49}x=-\frac{100}{49}
Divide 10 by -4.9 by multiplying 10 by the reciprocal of -4.9.
x^{2}-\frac{200}{49}x+\left(-\frac{100}{49}\right)^{2}=-\frac{100}{49}+\left(-\frac{100}{49}\right)^{2}
Divide -\frac{200}{49}, the coefficient of the x term, by 2 to get -\frac{100}{49}. Then add the square of -\frac{100}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=-\frac{100}{49}+\frac{10000}{2401}
Square -\frac{100}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{200}{49}x+\frac{10000}{2401}=\frac{5100}{2401}
Add -\frac{100}{49} to \frac{10000}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{100}{49}\right)^{2}=\frac{5100}{2401}
Factor x^{2}-\frac{200}{49}x+\frac{10000}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{100}{49}\right)^{2}}=\sqrt{\frac{5100}{2401}}
Take the square root of both sides of the equation.
x-\frac{100}{49}=\frac{10\sqrt{51}}{49} x-\frac{100}{49}=-\frac{10\sqrt{51}}{49}
Simplify.
x=\frac{10\sqrt{51}+100}{49} x=\frac{100-10\sqrt{51}}{49}
Add \frac{100}{49} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}