Solve for y
y=2
y=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
11y-6-4y^{2}=0
Subtract 4y^{2} from both sides.
-4y^{2}+11y-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-4\left(-6\right)=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4y^{2}+ay+by-6. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=8 b=3
The solution is the pair that gives sum 11.
\left(-4y^{2}+8y\right)+\left(3y-6\right)
Rewrite -4y^{2}+11y-6 as \left(-4y^{2}+8y\right)+\left(3y-6\right).
4y\left(-y+2\right)-3\left(-y+2\right)
Factor out 4y in the first and -3 in the second group.
\left(-y+2\right)\left(4y-3\right)
Factor out common term -y+2 by using distributive property.
y=2 y=\frac{3}{4}
To find equation solutions, solve -y+2=0 and 4y-3=0.
11y-6-4y^{2}=0
Subtract 4y^{2} from both sides.
-4y^{2}+11y-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-11±\sqrt{11^{2}-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 11 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-11±\sqrt{121-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
Square 11.
y=\frac{-11±\sqrt{121+16\left(-6\right)}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-11±\sqrt{121-96}}{2\left(-4\right)}
Multiply 16 times -6.
y=\frac{-11±\sqrt{25}}{2\left(-4\right)}
Add 121 to -96.
y=\frac{-11±5}{2\left(-4\right)}
Take the square root of 25.
y=\frac{-11±5}{-8}
Multiply 2 times -4.
y=-\frac{6}{-8}
Now solve the equation y=\frac{-11±5}{-8} when ± is plus. Add -11 to 5.
y=\frac{3}{4}
Reduce the fraction \frac{-6}{-8} to lowest terms by extracting and canceling out 2.
y=-\frac{16}{-8}
Now solve the equation y=\frac{-11±5}{-8} when ± is minus. Subtract 5 from -11.
y=2
Divide -16 by -8.
y=\frac{3}{4} y=2
The equation is now solved.
11y-6-4y^{2}=0
Subtract 4y^{2} from both sides.
11y-4y^{2}=6
Add 6 to both sides. Anything plus zero gives itself.
-4y^{2}+11y=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4y^{2}+11y}{-4}=\frac{6}{-4}
Divide both sides by -4.
y^{2}+\frac{11}{-4}y=\frac{6}{-4}
Dividing by -4 undoes the multiplication by -4.
y^{2}-\frac{11}{4}y=\frac{6}{-4}
Divide 11 by -4.
y^{2}-\frac{11}{4}y=-\frac{3}{2}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{11}{4}y+\left(-\frac{11}{8}\right)^{2}=-\frac{3}{2}+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{11}{4}y+\frac{121}{64}=-\frac{3}{2}+\frac{121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{11}{4}y+\frac{121}{64}=\frac{25}{64}
Add -\frac{3}{2} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{11}{8}\right)^{2}=\frac{25}{64}
Factor y^{2}-\frac{11}{4}y+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{8}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
y-\frac{11}{8}=\frac{5}{8} y-\frac{11}{8}=-\frac{5}{8}
Simplify.
y=2 y=\frac{3}{4}
Add \frac{11}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}