Solve for x
x=-\frac{33y}{5-11y}
y\neq \frac{5}{11}
Solve for y
y=\frac{5x}{11\left(x-3\right)}
x\neq 3
Graph
Share
Copied to clipboard
11y\left(x-3\right)=5x
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by x-3.
11yx-33y=5x
Use the distributive property to multiply 11y by x-3.
11yx-33y-5x=0
Subtract 5x from both sides.
11yx-5x=33y
Add 33y to both sides. Anything plus zero gives itself.
\left(11y-5\right)x=33y
Combine all terms containing x.
\frac{\left(11y-5\right)x}{11y-5}=\frac{33y}{11y-5}
Divide both sides by 11y-5.
x=\frac{33y}{11y-5}
Dividing by 11y-5 undoes the multiplication by 11y-5.
x=\frac{33y}{11y-5}\text{, }x\neq 3
Variable x cannot be equal to 3.
11y\left(x-3\right)=5x
Multiply both sides of the equation by x-3.
11yx-33y=5x
Use the distributive property to multiply 11y by x-3.
\left(11x-33\right)y=5x
Combine all terms containing y.
\frac{\left(11x-33\right)y}{11x-33}=\frac{5x}{11x-33}
Divide both sides by 11x-33.
y=\frac{5x}{11x-33}
Dividing by 11x-33 undoes the multiplication by 11x-33.
y=\frac{5x}{11\left(x-3\right)}
Divide 5x by 11x-33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}