Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

11\left(x^{2}-11x\right)
Factor out 11.
x\left(x-11\right)
Consider x^{2}-11x. Factor out x.
11x\left(x-11\right)
Rewrite the complete factored expression.
11x^{2}-121x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-121\right)±\sqrt{\left(-121\right)^{2}}}{2\times 11}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-121\right)±121}{2\times 11}
Take the square root of \left(-121\right)^{2}.
x=\frac{121±121}{2\times 11}
The opposite of -121 is 121.
x=\frac{121±121}{22}
Multiply 2 times 11.
x=\frac{242}{22}
Now solve the equation x=\frac{121±121}{22} when ± is plus. Add 121 to 121.
x=11
Divide 242 by 22.
x=\frac{0}{22}
Now solve the equation x=\frac{121±121}{22} when ± is minus. Subtract 121 from 121.
x=0
Divide 0 by 22.
11x^{2}-121x=11\left(x-11\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 11 for x_{1} and 0 for x_{2}.