Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+9-4x-15x
Combine 11x^{2} and -8x^{2} to get 3x^{2}.
3x^{2}+9-19x
Combine -4x and -15x to get -19x.
factor(3x^{2}+9-4x-15x)
Combine 11x^{2} and -8x^{2} to get 3x^{2}.
factor(3x^{2}+9-19x)
Combine -4x and -15x to get -19x.
3x^{2}-19x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\times 9}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 3\times 9}}{2\times 3}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-12\times 9}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-19\right)±\sqrt{361-108}}{2\times 3}
Multiply -12 times 9.
x=\frac{-\left(-19\right)±\sqrt{253}}{2\times 3}
Add 361 to -108.
x=\frac{19±\sqrt{253}}{2\times 3}
The opposite of -19 is 19.
x=\frac{19±\sqrt{253}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{253}+19}{6}
Now solve the equation x=\frac{19±\sqrt{253}}{6} when ± is plus. Add 19 to \sqrt{253}.
x=\frac{19-\sqrt{253}}{6}
Now solve the equation x=\frac{19±\sqrt{253}}{6} when ± is minus. Subtract \sqrt{253} from 19.
3x^{2}-19x+9=3\left(x-\frac{\sqrt{253}+19}{6}\right)\left(x-\frac{19-\sqrt{253}}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{19+\sqrt{253}}{6} for x_{1} and \frac{19-\sqrt{253}}{6} for x_{2}.