Solve for x
x=-\frac{73-5y}{y+11}
y\neq -11
Solve for y
y=-\frac{11x+73}{x-5}
x\neq 5
Graph
Share
Copied to clipboard
11x+xy+73=5y
Add 5y to both sides. Anything plus zero gives itself.
11x+xy=5y-73
Subtract 73 from both sides.
\left(11+y\right)x=5y-73
Combine all terms containing x.
\left(y+11\right)x=5y-73
The equation is in standard form.
\frac{\left(y+11\right)x}{y+11}=\frac{5y-73}{y+11}
Divide both sides by 11+y.
x=\frac{5y-73}{y+11}
Dividing by 11+y undoes the multiplication by 11+y.
xy-5y+73=-11x
Subtract 11x from both sides. Anything subtracted from zero gives its negation.
xy-5y=-11x-73
Subtract 73 from both sides.
\left(x-5\right)y=-11x-73
Combine all terms containing y.
\frac{\left(x-5\right)y}{x-5}=\frac{-11x-73}{x-5}
Divide both sides by x-5.
y=\frac{-11x-73}{x-5}
Dividing by x-5 undoes the multiplication by x-5.
y=-\frac{11x+73}{x-5}
Divide -11x-73 by x-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}