Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

11t^{2}-9t+2=0
Substitute t for k^{2}.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 11\times 2}}{2\times 11}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 11 for a, -9 for b, and 2 for c in the quadratic formula.
t=\frac{9±\sqrt{-7}}{22}
Do the calculations.
t=\frac{9+\sqrt{7}i}{22} t=\frac{-\sqrt{7}i+9}{22}
Solve the equation t=\frac{9±\sqrt{-7}}{22} when ± is plus and when ± is minus.
k=\frac{\sqrt[4]{2662}e^{\frac{\arctan(\frac{\sqrt{7}}{9})i+2\pi i}{2}}}{11} k=\frac{\sqrt[4]{2662}e^{\frac{\arctan(\frac{\sqrt{7}}{9})i}{2}}}{11} k=\frac{\sqrt[4]{2662}e^{-\frac{\arctan(\frac{\sqrt{7}}{9})i}{2}}}{11} k=\frac{\sqrt[4]{2662}e^{\frac{-\arctan(\frac{\sqrt{7}}{9})i+2\pi i}{2}}}{11}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for each t.