Evaluate
-\frac{53111}{2205}\approx -24.086621315
Factor
-\frac{53111}{2205} = -24\frac{191}{2205} = -24.086621315192744
Share
Copied to clipboard
11-15+\frac{\frac{50}{21^{2}}}{1}-\frac{101}{\sqrt{9\times 2+7}}
Multiply 3 and 5 to get 15.
-4+\frac{\frac{50}{21^{2}}}{1}-\frac{101}{\sqrt{9\times 2+7}}
Subtract 15 from 11 to get -4.
-4+\frac{\frac{50}{441}}{1}-\frac{101}{\sqrt{9\times 2+7}}
Calculate 21 to the power of 2 and get 441.
-4+\frac{50}{441}-\frac{101}{\sqrt{9\times 2+7}}
Anything divided by one gives itself.
-\frac{1764}{441}+\frac{50}{441}-\frac{101}{\sqrt{9\times 2+7}}
Convert -4 to fraction -\frac{1764}{441}.
\frac{-1764+50}{441}-\frac{101}{\sqrt{9\times 2+7}}
Since -\frac{1764}{441} and \frac{50}{441} have the same denominator, add them by adding their numerators.
-\frac{1714}{441}-\frac{101}{\sqrt{9\times 2+7}}
Add -1764 and 50 to get -1714.
-\frac{1714}{441}-\frac{101}{\sqrt{18+7}}
Multiply 9 and 2 to get 18.
-\frac{1714}{441}-\frac{101}{\sqrt{25}}
Add 18 and 7 to get 25.
-\frac{1714}{441}-\frac{101}{5}
Calculate the square root of 25 and get 5.
-\frac{8570}{2205}-\frac{44541}{2205}
Least common multiple of 441 and 5 is 2205. Convert -\frac{1714}{441} and \frac{101}{5} to fractions with denominator 2205.
\frac{-8570-44541}{2205}
Since -\frac{8570}{2205} and \frac{44541}{2205} have the same denominator, subtract them by subtracting their numerators.
-\frac{53111}{2205}
Subtract 44541 from -8570 to get -53111.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}