Solve for x
x = \frac{9 \sqrt{11} + 39}{25} \approx 2.753984925
x=\frac{39-9\sqrt{11}}{25}\approx 0.366015075
Graph
Share
Copied to clipboard
11\left(25x^{2}-60x+36\right)=\left(5x+12\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-6\right)^{2}.
275x^{2}-660x+396=\left(5x+12\right)^{2}
Use the distributive property to multiply 11 by 25x^{2}-60x+36.
275x^{2}-660x+396=25x^{2}+120x+144
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+12\right)^{2}.
275x^{2}-660x+396-25x^{2}=120x+144
Subtract 25x^{2} from both sides.
250x^{2}-660x+396=120x+144
Combine 275x^{2} and -25x^{2} to get 250x^{2}.
250x^{2}-660x+396-120x=144
Subtract 120x from both sides.
250x^{2}-780x+396=144
Combine -660x and -120x to get -780x.
250x^{2}-780x+396-144=0
Subtract 144 from both sides.
250x^{2}-780x+252=0
Subtract 144 from 396 to get 252.
x=\frac{-\left(-780\right)±\sqrt{\left(-780\right)^{2}-4\times 250\times 252}}{2\times 250}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 250 for a, -780 for b, and 252 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-780\right)±\sqrt{608400-4\times 250\times 252}}{2\times 250}
Square -780.
x=\frac{-\left(-780\right)±\sqrt{608400-1000\times 252}}{2\times 250}
Multiply -4 times 250.
x=\frac{-\left(-780\right)±\sqrt{608400-252000}}{2\times 250}
Multiply -1000 times 252.
x=\frac{-\left(-780\right)±\sqrt{356400}}{2\times 250}
Add 608400 to -252000.
x=\frac{-\left(-780\right)±180\sqrt{11}}{2\times 250}
Take the square root of 356400.
x=\frac{780±180\sqrt{11}}{2\times 250}
The opposite of -780 is 780.
x=\frac{780±180\sqrt{11}}{500}
Multiply 2 times 250.
x=\frac{180\sqrt{11}+780}{500}
Now solve the equation x=\frac{780±180\sqrt{11}}{500} when ± is plus. Add 780 to 180\sqrt{11}.
x=\frac{9\sqrt{11}+39}{25}
Divide 780+180\sqrt{11} by 500.
x=\frac{780-180\sqrt{11}}{500}
Now solve the equation x=\frac{780±180\sqrt{11}}{500} when ± is minus. Subtract 180\sqrt{11} from 780.
x=\frac{39-9\sqrt{11}}{25}
Divide 780-180\sqrt{11} by 500.
x=\frac{9\sqrt{11}+39}{25} x=\frac{39-9\sqrt{11}}{25}
The equation is now solved.
11\left(25x^{2}-60x+36\right)=\left(5x+12\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-6\right)^{2}.
275x^{2}-660x+396=\left(5x+12\right)^{2}
Use the distributive property to multiply 11 by 25x^{2}-60x+36.
275x^{2}-660x+396=25x^{2}+120x+144
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+12\right)^{2}.
275x^{2}-660x+396-25x^{2}=120x+144
Subtract 25x^{2} from both sides.
250x^{2}-660x+396=120x+144
Combine 275x^{2} and -25x^{2} to get 250x^{2}.
250x^{2}-660x+396-120x=144
Subtract 120x from both sides.
250x^{2}-780x+396=144
Combine -660x and -120x to get -780x.
250x^{2}-780x=144-396
Subtract 396 from both sides.
250x^{2}-780x=-252
Subtract 396 from 144 to get -252.
\frac{250x^{2}-780x}{250}=-\frac{252}{250}
Divide both sides by 250.
x^{2}+\left(-\frac{780}{250}\right)x=-\frac{252}{250}
Dividing by 250 undoes the multiplication by 250.
x^{2}-\frac{78}{25}x=-\frac{252}{250}
Reduce the fraction \frac{-780}{250} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{78}{25}x=-\frac{126}{125}
Reduce the fraction \frac{-252}{250} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{78}{25}x+\left(-\frac{39}{25}\right)^{2}=-\frac{126}{125}+\left(-\frac{39}{25}\right)^{2}
Divide -\frac{78}{25}, the coefficient of the x term, by 2 to get -\frac{39}{25}. Then add the square of -\frac{39}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=-\frac{126}{125}+\frac{1521}{625}
Square -\frac{39}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{78}{25}x+\frac{1521}{625}=\frac{891}{625}
Add -\frac{126}{125} to \frac{1521}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{39}{25}\right)^{2}=\frac{891}{625}
Factor x^{2}-\frac{78}{25}x+\frac{1521}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{39}{25}\right)^{2}}=\sqrt{\frac{891}{625}}
Take the square root of both sides of the equation.
x-\frac{39}{25}=\frac{9\sqrt{11}}{25} x-\frac{39}{25}=-\frac{9\sqrt{11}}{25}
Simplify.
x=\frac{9\sqrt{11}+39}{25} x=\frac{39-9\sqrt{11}}{25}
Add \frac{39}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}