Factor
\left(x-4\right)\left(11x-16\right)
Evaluate
\left(x-4\right)\left(11x-16\right)
Graph
Share
Copied to clipboard
a+b=-60 ab=11\times 64=704
Factor the expression by grouping. First, the expression needs to be rewritten as 11x^{2}+ax+bx+64. To find a and b, set up a system to be solved.
-1,-704 -2,-352 -4,-176 -8,-88 -11,-64 -16,-44 -22,-32
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 704.
-1-704=-705 -2-352=-354 -4-176=-180 -8-88=-96 -11-64=-75 -16-44=-60 -22-32=-54
Calculate the sum for each pair.
a=-44 b=-16
The solution is the pair that gives sum -60.
\left(11x^{2}-44x\right)+\left(-16x+64\right)
Rewrite 11x^{2}-60x+64 as \left(11x^{2}-44x\right)+\left(-16x+64\right).
11x\left(x-4\right)-16\left(x-4\right)
Factor out 11x in the first and -16 in the second group.
\left(x-4\right)\left(11x-16\right)
Factor out common term x-4 by using distributive property.
11x^{2}-60x+64=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 11\times 64}}{2\times 11}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 11\times 64}}{2\times 11}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3600-44\times 64}}{2\times 11}
Multiply -4 times 11.
x=\frac{-\left(-60\right)±\sqrt{3600-2816}}{2\times 11}
Multiply -44 times 64.
x=\frac{-\left(-60\right)±\sqrt{784}}{2\times 11}
Add 3600 to -2816.
x=\frac{-\left(-60\right)±28}{2\times 11}
Take the square root of 784.
x=\frac{60±28}{2\times 11}
The opposite of -60 is 60.
x=\frac{60±28}{22}
Multiply 2 times 11.
x=\frac{88}{22}
Now solve the equation x=\frac{60±28}{22} when ± is plus. Add 60 to 28.
x=4
Divide 88 by 22.
x=\frac{32}{22}
Now solve the equation x=\frac{60±28}{22} when ± is minus. Subtract 28 from 60.
x=\frac{16}{11}
Reduce the fraction \frac{32}{22} to lowest terms by extracting and canceling out 2.
11x^{2}-60x+64=11\left(x-4\right)\left(x-\frac{16}{11}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and \frac{16}{11} for x_{2}.
11x^{2}-60x+64=11\left(x-4\right)\times \frac{11x-16}{11}
Subtract \frac{16}{11} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
11x^{2}-60x+64=\left(x-4\right)\left(11x-16\right)
Cancel out 11, the greatest common factor in 11 and 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}