Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

11x^{2}+48=0
Add -56 and 104 to get 48.
11x^{2}=-48
Subtract 48 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{48}{11}
Divide both sides by 11.
x=\frac{4\sqrt{33}i}{11} x=-\frac{4\sqrt{33}i}{11}
The equation is now solved.
11x^{2}+48=0
Add -56 and 104 to get 48.
x=\frac{0±\sqrt{0^{2}-4\times 11\times 48}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 0 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 11\times 48}}{2\times 11}
Square 0.
x=\frac{0±\sqrt{-44\times 48}}{2\times 11}
Multiply -4 times 11.
x=\frac{0±\sqrt{-2112}}{2\times 11}
Multiply -44 times 48.
x=\frac{0±8\sqrt{33}i}{2\times 11}
Take the square root of -2112.
x=\frac{0±8\sqrt{33}i}{22}
Multiply 2 times 11.
x=\frac{4\sqrt{33}i}{11}
Now solve the equation x=\frac{0±8\sqrt{33}i}{22} when ± is plus.
x=-\frac{4\sqrt{33}i}{11}
Now solve the equation x=\frac{0±8\sqrt{33}i}{22} when ± is minus.
x=\frac{4\sqrt{33}i}{11} x=-\frac{4\sqrt{33}i}{11}
The equation is now solved.