Solve for x (complex solution)
x=\frac{21+\sqrt{3607}i}{22}\approx 0.954545455+2.729922955i
x=\frac{-\sqrt{3607}i+21}{22}\approx 0.954545455-2.729922955i
Graph
Share
Copied to clipboard
11x^{2}-21x+92=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 11\times 92}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, -21 for b, and 92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 11\times 92}}{2\times 11}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-44\times 92}}{2\times 11}
Multiply -4 times 11.
x=\frac{-\left(-21\right)±\sqrt{441-4048}}{2\times 11}
Multiply -44 times 92.
x=\frac{-\left(-21\right)±\sqrt{-3607}}{2\times 11}
Add 441 to -4048.
x=\frac{-\left(-21\right)±\sqrt{3607}i}{2\times 11}
Take the square root of -3607.
x=\frac{21±\sqrt{3607}i}{2\times 11}
The opposite of -21 is 21.
x=\frac{21±\sqrt{3607}i}{22}
Multiply 2 times 11.
x=\frac{21+\sqrt{3607}i}{22}
Now solve the equation x=\frac{21±\sqrt{3607}i}{22} when ± is plus. Add 21 to i\sqrt{3607}.
x=\frac{-\sqrt{3607}i+21}{22}
Now solve the equation x=\frac{21±\sqrt{3607}i}{22} when ± is minus. Subtract i\sqrt{3607} from 21.
x=\frac{21+\sqrt{3607}i}{22} x=\frac{-\sqrt{3607}i+21}{22}
The equation is now solved.
11x^{2}-21x+92=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
11x^{2}-21x+92-92=-92
Subtract 92 from both sides of the equation.
11x^{2}-21x=-92
Subtracting 92 from itself leaves 0.
\frac{11x^{2}-21x}{11}=-\frac{92}{11}
Divide both sides by 11.
x^{2}-\frac{21}{11}x=-\frac{92}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}-\frac{21}{11}x+\left(-\frac{21}{22}\right)^{2}=-\frac{92}{11}+\left(-\frac{21}{22}\right)^{2}
Divide -\frac{21}{11}, the coefficient of the x term, by 2 to get -\frac{21}{22}. Then add the square of -\frac{21}{22} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{21}{11}x+\frac{441}{484}=-\frac{92}{11}+\frac{441}{484}
Square -\frac{21}{22} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{21}{11}x+\frac{441}{484}=-\frac{3607}{484}
Add -\frac{92}{11} to \frac{441}{484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{21}{22}\right)^{2}=-\frac{3607}{484}
Factor x^{2}-\frac{21}{11}x+\frac{441}{484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{22}\right)^{2}}=\sqrt{-\frac{3607}{484}}
Take the square root of both sides of the equation.
x-\frac{21}{22}=\frac{\sqrt{3607}i}{22} x-\frac{21}{22}=-\frac{\sqrt{3607}i}{22}
Simplify.
x=\frac{21+\sqrt{3607}i}{22} x=\frac{-\sqrt{3607}i+21}{22}
Add \frac{21}{22} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}