Solve for x (complex solution)
x=\frac{-5+\sqrt{195}i}{11}\approx -0.454545455+1.269476368i
x=\frac{-\sqrt{195}i-5}{11}\approx -0.454545455-1.269476368i
Graph
Share
Copied to clipboard
11x^{2}+10x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 11\times 20}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 10 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 11\times 20}}{2\times 11}
Square 10.
x=\frac{-10±\sqrt{100-44\times 20}}{2\times 11}
Multiply -4 times 11.
x=\frac{-10±\sqrt{100-880}}{2\times 11}
Multiply -44 times 20.
x=\frac{-10±\sqrt{-780}}{2\times 11}
Add 100 to -880.
x=\frac{-10±2\sqrt{195}i}{2\times 11}
Take the square root of -780.
x=\frac{-10±2\sqrt{195}i}{22}
Multiply 2 times 11.
x=\frac{-10+2\sqrt{195}i}{22}
Now solve the equation x=\frac{-10±2\sqrt{195}i}{22} when ± is plus. Add -10 to 2i\sqrt{195}.
x=\frac{-5+\sqrt{195}i}{11}
Divide -10+2i\sqrt{195} by 22.
x=\frac{-2\sqrt{195}i-10}{22}
Now solve the equation x=\frac{-10±2\sqrt{195}i}{22} when ± is minus. Subtract 2i\sqrt{195} from -10.
x=\frac{-\sqrt{195}i-5}{11}
Divide -10-2i\sqrt{195} by 22.
x=\frac{-5+\sqrt{195}i}{11} x=\frac{-\sqrt{195}i-5}{11}
The equation is now solved.
11x^{2}+10x+20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
11x^{2}+10x+20-20=-20
Subtract 20 from both sides of the equation.
11x^{2}+10x=-20
Subtracting 20 from itself leaves 0.
\frac{11x^{2}+10x}{11}=-\frac{20}{11}
Divide both sides by 11.
x^{2}+\frac{10}{11}x=-\frac{20}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}+\frac{10}{11}x+\left(\frac{5}{11}\right)^{2}=-\frac{20}{11}+\left(\frac{5}{11}\right)^{2}
Divide \frac{10}{11}, the coefficient of the x term, by 2 to get \frac{5}{11}. Then add the square of \frac{5}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{11}x+\frac{25}{121}=-\frac{20}{11}+\frac{25}{121}
Square \frac{5}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{11}x+\frac{25}{121}=-\frac{195}{121}
Add -\frac{20}{11} to \frac{25}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{11}\right)^{2}=-\frac{195}{121}
Factor x^{2}+\frac{10}{11}x+\frac{25}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{11}\right)^{2}}=\sqrt{-\frac{195}{121}}
Take the square root of both sides of the equation.
x+\frac{5}{11}=\frac{\sqrt{195}i}{11} x+\frac{5}{11}=-\frac{\sqrt{195}i}{11}
Simplify.
x=\frac{-5+\sqrt{195}i}{11} x=\frac{-\sqrt{195}i-5}{11}
Subtract \frac{5}{11} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}