Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

11x^{2}+106x+259=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-106±\sqrt{106^{2}-4\times 11\times 259}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, 106 for b, and 259 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-106±\sqrt{11236-4\times 11\times 259}}{2\times 11}
Square 106.
x=\frac{-106±\sqrt{11236-44\times 259}}{2\times 11}
Multiply -4 times 11.
x=\frac{-106±\sqrt{11236-11396}}{2\times 11}
Multiply -44 times 259.
x=\frac{-106±\sqrt{-160}}{2\times 11}
Add 11236 to -11396.
x=\frac{-106±4\sqrt{10}i}{2\times 11}
Take the square root of -160.
x=\frac{-106±4\sqrt{10}i}{22}
Multiply 2 times 11.
x=\frac{-106+4\sqrt{10}i}{22}
Now solve the equation x=\frac{-106±4\sqrt{10}i}{22} when ± is plus. Add -106 to 4i\sqrt{10}.
x=\frac{-53+2\sqrt{10}i}{11}
Divide -106+4i\sqrt{10} by 22.
x=\frac{-4\sqrt{10}i-106}{22}
Now solve the equation x=\frac{-106±4\sqrt{10}i}{22} when ± is minus. Subtract 4i\sqrt{10} from -106.
x=\frac{-2\sqrt{10}i-53}{11}
Divide -106-4i\sqrt{10} by 22.
x=\frac{-53+2\sqrt{10}i}{11} x=\frac{-2\sqrt{10}i-53}{11}
The equation is now solved.
11x^{2}+106x+259=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
11x^{2}+106x+259-259=-259
Subtract 259 from both sides of the equation.
11x^{2}+106x=-259
Subtracting 259 from itself leaves 0.
\frac{11x^{2}+106x}{11}=-\frac{259}{11}
Divide both sides by 11.
x^{2}+\frac{106}{11}x=-\frac{259}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}+\frac{106}{11}x+\left(\frac{53}{11}\right)^{2}=-\frac{259}{11}+\left(\frac{53}{11}\right)^{2}
Divide \frac{106}{11}, the coefficient of the x term, by 2 to get \frac{53}{11}. Then add the square of \frac{53}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{106}{11}x+\frac{2809}{121}=-\frac{259}{11}+\frac{2809}{121}
Square \frac{53}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{106}{11}x+\frac{2809}{121}=-\frac{40}{121}
Add -\frac{259}{11} to \frac{2809}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{53}{11}\right)^{2}=-\frac{40}{121}
Factor x^{2}+\frac{106}{11}x+\frac{2809}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{53}{11}\right)^{2}}=\sqrt{-\frac{40}{121}}
Take the square root of both sides of the equation.
x+\frac{53}{11}=\frac{2\sqrt{10}i}{11} x+\frac{53}{11}=-\frac{2\sqrt{10}i}{11}
Simplify.
x=\frac{-53+2\sqrt{10}i}{11} x=\frac{-2\sqrt{10}i-53}{11}
Subtract \frac{53}{11} from both sides of the equation.