Evaluate
\frac{143}{17}\approx 8.411764706
Factor
\frac{11 \cdot 13}{17} = 8\frac{7}{17} = 8.411764705882353
Share
Copied to clipboard
\frac{143+5}{13}-\left(\frac{10}{17}+\frac{31}{13}\right)
Multiply 11 and 13 to get 143.
\frac{148}{13}-\left(\frac{10}{17}+\frac{31}{13}\right)
Add 143 and 5 to get 148.
\frac{148}{13}-\left(\frac{130}{221}+\frac{527}{221}\right)
Least common multiple of 17 and 13 is 221. Convert \frac{10}{17} and \frac{31}{13} to fractions with denominator 221.
\frac{148}{13}-\frac{130+527}{221}
Since \frac{130}{221} and \frac{527}{221} have the same denominator, add them by adding their numerators.
\frac{148}{13}-\frac{657}{221}
Add 130 and 527 to get 657.
\frac{2516}{221}-\frac{657}{221}
Least common multiple of 13 and 221 is 221. Convert \frac{148}{13} and \frac{657}{221} to fractions with denominator 221.
\frac{2516-657}{221}
Since \frac{2516}{221} and \frac{657}{221} have the same denominator, subtract them by subtracting their numerators.
\frac{1859}{221}
Subtract 657 from 2516 to get 1859.
\frac{143}{17}
Reduce the fraction \frac{1859}{221} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}