Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(55x^{2}+82x-4)
Multiply 11 and 5 to get 55.
55x^{2}+82x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-82±\sqrt{82^{2}-4\times 55\left(-4\right)}}{2\times 55}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-82±\sqrt{6724-4\times 55\left(-4\right)}}{2\times 55}
Square 82.
x=\frac{-82±\sqrt{6724-220\left(-4\right)}}{2\times 55}
Multiply -4 times 55.
x=\frac{-82±\sqrt{6724+880}}{2\times 55}
Multiply -220 times -4.
x=\frac{-82±\sqrt{7604}}{2\times 55}
Add 6724 to 880.
x=\frac{-82±2\sqrt{1901}}{2\times 55}
Take the square root of 7604.
x=\frac{-82±2\sqrt{1901}}{110}
Multiply 2 times 55.
x=\frac{2\sqrt{1901}-82}{110}
Now solve the equation x=\frac{-82±2\sqrt{1901}}{110} when ± is plus. Add -82 to 2\sqrt{1901}.
x=\frac{\sqrt{1901}-41}{55}
Divide -82+2\sqrt{1901} by 110.
x=\frac{-2\sqrt{1901}-82}{110}
Now solve the equation x=\frac{-82±2\sqrt{1901}}{110} when ± is minus. Subtract 2\sqrt{1901} from -82.
x=\frac{-\sqrt{1901}-41}{55}
Divide -82-2\sqrt{1901} by 110.
55x^{2}+82x-4=55\left(x-\frac{\sqrt{1901}-41}{55}\right)\left(x-\frac{-\sqrt{1901}-41}{55}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-41+\sqrt{1901}}{55} for x_{1} and \frac{-41-\sqrt{1901}}{55} for x_{2}.
55x^{2}+82x-4
Multiply 11 and 5 to get 55.