Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

44\left(x-\frac{1}{2}\right)^{2}=1
Multiply 11 and 4 to get 44.
44\left(x^{2}-x+\frac{1}{4}\right)=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
44x^{2}-44x+11=1
Use the distributive property to multiply 44 by x^{2}-x+\frac{1}{4}.
44x^{2}-44x+11-1=0
Subtract 1 from both sides.
44x^{2}-44x+10=0
Subtract 1 from 11 to get 10.
x=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 44\times 10}}{2\times 44}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 44 for a, -44 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-44\right)±\sqrt{1936-4\times 44\times 10}}{2\times 44}
Square -44.
x=\frac{-\left(-44\right)±\sqrt{1936-176\times 10}}{2\times 44}
Multiply -4 times 44.
x=\frac{-\left(-44\right)±\sqrt{1936-1760}}{2\times 44}
Multiply -176 times 10.
x=\frac{-\left(-44\right)±\sqrt{176}}{2\times 44}
Add 1936 to -1760.
x=\frac{-\left(-44\right)±4\sqrt{11}}{2\times 44}
Take the square root of 176.
x=\frac{44±4\sqrt{11}}{2\times 44}
The opposite of -44 is 44.
x=\frac{44±4\sqrt{11}}{88}
Multiply 2 times 44.
x=\frac{4\sqrt{11}+44}{88}
Now solve the equation x=\frac{44±4\sqrt{11}}{88} when ± is plus. Add 44 to 4\sqrt{11}.
x=\frac{\sqrt{11}}{22}+\frac{1}{2}
Divide 44+4\sqrt{11} by 88.
x=\frac{44-4\sqrt{11}}{88}
Now solve the equation x=\frac{44±4\sqrt{11}}{88} when ± is minus. Subtract 4\sqrt{11} from 44.
x=-\frac{\sqrt{11}}{22}+\frac{1}{2}
Divide 44-4\sqrt{11} by 88.
x=\frac{\sqrt{11}}{22}+\frac{1}{2} x=-\frac{\sqrt{11}}{22}+\frac{1}{2}
The equation is now solved.
44\left(x-\frac{1}{2}\right)^{2}=1
Multiply 11 and 4 to get 44.
44\left(x^{2}-x+\frac{1}{4}\right)=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{2}\right)^{2}.
44x^{2}-44x+11=1
Use the distributive property to multiply 44 by x^{2}-x+\frac{1}{4}.
44x^{2}-44x=1-11
Subtract 11 from both sides.
44x^{2}-44x=-10
Subtract 11 from 1 to get -10.
\frac{44x^{2}-44x}{44}=-\frac{10}{44}
Divide both sides by 44.
x^{2}+\left(-\frac{44}{44}\right)x=-\frac{10}{44}
Dividing by 44 undoes the multiplication by 44.
x^{2}-x=-\frac{10}{44}
Divide -44 by 44.
x^{2}-x=-\frac{5}{22}
Reduce the fraction \frac{-10}{44} to lowest terms by extracting and canceling out 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{22}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{5}{22}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{1}{44}
Add -\frac{5}{22} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{44}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{44}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{11}}{22} x-\frac{1}{2}=-\frac{\sqrt{11}}{22}
Simplify.
x=\frac{\sqrt{11}}{22}+\frac{1}{2} x=-\frac{\sqrt{11}}{22}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.