Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

11\left(x^{2}-2x+1\right)=\left(2x-3\right)^{2}+4x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
11x^{2}-22x+11=\left(2x-3\right)^{2}+4x^{2}+1
Use the distributive property to multiply 11 by x^{2}-2x+1.
11x^{2}-22x+11=4x^{2}-12x+9+4x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
11x^{2}-22x+11=8x^{2}-12x+9+1
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
11x^{2}-22x+11=8x^{2}-12x+10
Add 9 and 1 to get 10.
11x^{2}-22x+11-8x^{2}=-12x+10
Subtract 8x^{2} from both sides.
3x^{2}-22x+11=-12x+10
Combine 11x^{2} and -8x^{2} to get 3x^{2}.
3x^{2}-22x+11+12x=10
Add 12x to both sides.
3x^{2}-10x+11=10
Combine -22x and 12x to get -10x.
3x^{2}-10x+11-10=0
Subtract 10 from both sides.
3x^{2}-10x+1=0
Subtract 10 from 11 to get 1.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 3}}{2\times 3}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-12}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-10\right)±\sqrt{88}}{2\times 3}
Add 100 to -12.
x=\frac{-\left(-10\right)±2\sqrt{22}}{2\times 3}
Take the square root of 88.
x=\frac{10±2\sqrt{22}}{2\times 3}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{22}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{22}+10}{6}
Now solve the equation x=\frac{10±2\sqrt{22}}{6} when ± is plus. Add 10 to 2\sqrt{22}.
x=\frac{\sqrt{22}+5}{3}
Divide 10+2\sqrt{22} by 6.
x=\frac{10-2\sqrt{22}}{6}
Now solve the equation x=\frac{10±2\sqrt{22}}{6} when ± is minus. Subtract 2\sqrt{22} from 10.
x=\frac{5-\sqrt{22}}{3}
Divide 10-2\sqrt{22} by 6.
x=\frac{\sqrt{22}+5}{3} x=\frac{5-\sqrt{22}}{3}
The equation is now solved.
11\left(x^{2}-2x+1\right)=\left(2x-3\right)^{2}+4x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
11x^{2}-22x+11=\left(2x-3\right)^{2}+4x^{2}+1
Use the distributive property to multiply 11 by x^{2}-2x+1.
11x^{2}-22x+11=4x^{2}-12x+9+4x^{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
11x^{2}-22x+11=8x^{2}-12x+9+1
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
11x^{2}-22x+11=8x^{2}-12x+10
Add 9 and 1 to get 10.
11x^{2}-22x+11-8x^{2}=-12x+10
Subtract 8x^{2} from both sides.
3x^{2}-22x+11=-12x+10
Combine 11x^{2} and -8x^{2} to get 3x^{2}.
3x^{2}-22x+11+12x=10
Add 12x to both sides.
3x^{2}-10x+11=10
Combine -22x and 12x to get -10x.
3x^{2}-10x=10-11
Subtract 11 from both sides.
3x^{2}-10x=-1
Subtract 11 from 10 to get -1.
\frac{3x^{2}-10x}{3}=-\frac{1}{3}
Divide both sides by 3.
x^{2}-\frac{10}{3}x=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{1}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{22}{9}
Add -\frac{1}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=\frac{22}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{22}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{\sqrt{22}}{3} x-\frac{5}{3}=-\frac{\sqrt{22}}{3}
Simplify.
x=\frac{\sqrt{22}+5}{3} x=\frac{5-\sqrt{22}}{3}
Add \frac{5}{3} to both sides of the equation.