Solve for x
x = \frac{433}{151} = 2\frac{131}{151} \approx 2.867549669
Graph
Share
Copied to clipboard
132-11x-30=20x+59-6\left(4x-13\right)\left(-5\right)
Use the distributive property to multiply 11 by 12-x.
102-11x=20x+59-6\left(4x-13\right)\left(-5\right)
Subtract 30 from 132 to get 102.
102-11x=20x+59-\left(-30\left(4x-13\right)\right)
Multiply 6 and -5 to get -30.
102-11x=20x+59+30\left(4x-13\right)
The opposite of -30\left(4x-13\right) is 30\left(4x-13\right).
102-11x=20x+59+120x-390
Use the distributive property to multiply 30 by 4x-13.
102-11x=140x+59-390
Combine 20x and 120x to get 140x.
102-11x=140x-331
Subtract 390 from 59 to get -331.
102-11x-140x=-331
Subtract 140x from both sides.
102-151x=-331
Combine -11x and -140x to get -151x.
-151x=-331-102
Subtract 102 from both sides.
-151x=-433
Subtract 102 from -331 to get -433.
x=\frac{-433}{-151}
Divide both sides by -151.
x=\frac{433}{151}
Fraction \frac{-433}{-151} can be simplified to \frac{433}{151} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}