11 \cdot \frac { 5 a } { 7 b } = \frac { ? } { - 7 b }
Solve for a
a=-\frac{1}{55}\approx -0.018181818
b\neq 0
Solve for b
b\neq 0
a = -\frac{1}{55} = -0.01818181818181818
Share
Copied to clipboard
11\times 5a=-1
Multiply both sides of the equation by 7b, the least common multiple of 7b,-7b.
55a=-1
Multiply 11 and 5 to get 55.
a=\frac{-1}{55}
Divide both sides by 55.
a=-\frac{1}{55}
Fraction \frac{-1}{55} can be rewritten as -\frac{1}{55} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}