Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x=11
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x-11=0
Subtract 11 from both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-11\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-11\right)}}{2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+44}}{2}
Multiply -4 times -11.
x=\frac{-\left(-4\right)±\sqrt{60}}{2}
Add 16 to 44.
x=\frac{-\left(-4\right)±2\sqrt{15}}{2}
Take the square root of 60.
x=\frac{4±2\sqrt{15}}{2}
The opposite of -4 is 4.
x=\frac{2\sqrt{15}+4}{2}
Now solve the equation x=\frac{4±2\sqrt{15}}{2} when ± is plus. Add 4 to 2\sqrt{15}.
x=\sqrt{15}+2
Divide 4+2\sqrt{15} by 2.
x=\frac{4-2\sqrt{15}}{2}
Now solve the equation x=\frac{4±2\sqrt{15}}{2} when ± is minus. Subtract 2\sqrt{15} from 4.
x=2-\sqrt{15}
Divide 4-2\sqrt{15} by 2.
x=\sqrt{15}+2 x=2-\sqrt{15}
The equation is now solved.
x^{2}-4x=11
Swap sides so that all variable terms are on the left hand side.
x^{2}-4x+\left(-2\right)^{2}=11+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=11+4
Square -2.
x^{2}-4x+4=15
Add 11 to 4.
\left(x-2\right)^{2}=15
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x-2=\sqrt{15} x-2=-\sqrt{15}
Simplify.
x=\sqrt{15}+2 x=2-\sqrt{15}
Add 2 to both sides of the equation.