11 = \sqrt { x ^ { 2 } + 9 } d x
Solve for d
d=\frac{11}{x\sqrt{x^{2}+9}}
x\neq 0
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{-\frac{2\sqrt{81d^{2}+484}}{d}-18}}{2}\text{, }&d<0\\x=\frac{\sqrt{\frac{2\sqrt{81d^{2}+484}}{d}-18}}{2}\text{, }&d>0\end{matrix}\right.
Graph
Share
Copied to clipboard
\sqrt{x^{2}+9}dx=11
Swap sides so that all variable terms are on the left hand side.
x\sqrt{x^{2}+9}d=11
The equation is in standard form.
\frac{x\sqrt{x^{2}+9}d}{x\sqrt{x^{2}+9}}=\frac{11}{x\sqrt{x^{2}+9}}
Divide both sides by \sqrt{x^{2}+9}x.
d=\frac{11}{x\sqrt{x^{2}+9}}
Dividing by \sqrt{x^{2}+9}x undoes the multiplication by \sqrt{x^{2}+9}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}