Evaluate
\frac{533-31\sqrt{5}}{40}\approx 11.592047317
Expand
\frac{533 - 31 \sqrt{5}}{40} = 11.592047317437663
Share
Copied to clipboard
11+\frac{31}{25+10\sqrt{5}+\left(\sqrt{5}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{5}\right)^{2}.
11+\frac{31}{25+10\sqrt{5}+5}
The square of \sqrt{5} is 5.
11+\frac{31}{30+10\sqrt{5}}
Add 25 and 5 to get 30.
11+\frac{31\left(30-10\sqrt{5}\right)}{\left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right)}
Rationalize the denominator of \frac{31}{30+10\sqrt{5}} by multiplying numerator and denominator by 30-10\sqrt{5}.
11+\frac{31\left(30-10\sqrt{5}\right)}{30^{2}-\left(10\sqrt{5}\right)^{2}}
Consider \left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-\left(10\sqrt{5}\right)^{2}}
Calculate 30 to the power of 2 and get 900.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-10^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(10\sqrt{5}\right)^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\left(\sqrt{5}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\times 5}
The square of \sqrt{5} is 5.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-500}
Multiply 100 and 5 to get 500.
11+\frac{31\left(30-10\sqrt{5}\right)}{400}
Subtract 500 from 900 to get 400.
\frac{11\times 400}{400}+\frac{31\left(30-10\sqrt{5}\right)}{400}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11 times \frac{400}{400}.
\frac{11\times 400+31\left(30-10\sqrt{5}\right)}{400}
Since \frac{11\times 400}{400} and \frac{31\left(30-10\sqrt{5}\right)}{400} have the same denominator, add them by adding their numerators.
\frac{4400+930-310\sqrt{5}}{400}
Do the multiplications in 11\times 400+31\left(30-10\sqrt{5}\right).
\frac{5330-310\sqrt{5}}{400}
Do the calculations in 4400+930-310\sqrt{5}.
11+\frac{31}{25+10\sqrt{5}+\left(\sqrt{5}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{5}\right)^{2}.
11+\frac{31}{25+10\sqrt{5}+5}
The square of \sqrt{5} is 5.
11+\frac{31}{30+10\sqrt{5}}
Add 25 and 5 to get 30.
11+\frac{31\left(30-10\sqrt{5}\right)}{\left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right)}
Rationalize the denominator of \frac{31}{30+10\sqrt{5}} by multiplying numerator and denominator by 30-10\sqrt{5}.
11+\frac{31\left(30-10\sqrt{5}\right)}{30^{2}-\left(10\sqrt{5}\right)^{2}}
Consider \left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-\left(10\sqrt{5}\right)^{2}}
Calculate 30 to the power of 2 and get 900.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-10^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(10\sqrt{5}\right)^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\left(\sqrt{5}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\times 5}
The square of \sqrt{5} is 5.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-500}
Multiply 100 and 5 to get 500.
11+\frac{31\left(30-10\sqrt{5}\right)}{400}
Subtract 500 from 900 to get 400.
\frac{11\times 400}{400}+\frac{31\left(30-10\sqrt{5}\right)}{400}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11 times \frac{400}{400}.
\frac{11\times 400+31\left(30-10\sqrt{5}\right)}{400}
Since \frac{11\times 400}{400} and \frac{31\left(30-10\sqrt{5}\right)}{400} have the same denominator, add them by adding their numerators.
\frac{4400+930-310\sqrt{5}}{400}
Do the multiplications in 11\times 400+31\left(30-10\sqrt{5}\right).
\frac{5330-310\sqrt{5}}{400}
Do the calculations in 4400+930-310\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}