Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

11+\frac{31}{25+10\sqrt{5}+\left(\sqrt{5}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{5}\right)^{2}.
11+\frac{31}{25+10\sqrt{5}+5}
The square of \sqrt{5} is 5.
11+\frac{31}{30+10\sqrt{5}}
Add 25 and 5 to get 30.
11+\frac{31\left(30-10\sqrt{5}\right)}{\left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right)}
Rationalize the denominator of \frac{31}{30+10\sqrt{5}} by multiplying numerator and denominator by 30-10\sqrt{5}.
11+\frac{31\left(30-10\sqrt{5}\right)}{30^{2}-\left(10\sqrt{5}\right)^{2}}
Consider \left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-\left(10\sqrt{5}\right)^{2}}
Calculate 30 to the power of 2 and get 900.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-10^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(10\sqrt{5}\right)^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\left(\sqrt{5}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\times 5}
The square of \sqrt{5} is 5.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-500}
Multiply 100 and 5 to get 500.
11+\frac{31\left(30-10\sqrt{5}\right)}{400}
Subtract 500 from 900 to get 400.
\frac{11\times 400}{400}+\frac{31\left(30-10\sqrt{5}\right)}{400}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11 times \frac{400}{400}.
\frac{11\times 400+31\left(30-10\sqrt{5}\right)}{400}
Since \frac{11\times 400}{400} and \frac{31\left(30-10\sqrt{5}\right)}{400} have the same denominator, add them by adding their numerators.
\frac{4400+930-310\sqrt{5}}{400}
Do the multiplications in 11\times 400+31\left(30-10\sqrt{5}\right).
\frac{5330-310\sqrt{5}}{400}
Do the calculations in 4400+930-310\sqrt{5}.
11+\frac{31}{25+10\sqrt{5}+\left(\sqrt{5}\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{5}\right)^{2}.
11+\frac{31}{25+10\sqrt{5}+5}
The square of \sqrt{5} is 5.
11+\frac{31}{30+10\sqrt{5}}
Add 25 and 5 to get 30.
11+\frac{31\left(30-10\sqrt{5}\right)}{\left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right)}
Rationalize the denominator of \frac{31}{30+10\sqrt{5}} by multiplying numerator and denominator by 30-10\sqrt{5}.
11+\frac{31\left(30-10\sqrt{5}\right)}{30^{2}-\left(10\sqrt{5}\right)^{2}}
Consider \left(30+10\sqrt{5}\right)\left(30-10\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-\left(10\sqrt{5}\right)^{2}}
Calculate 30 to the power of 2 and get 900.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-10^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(10\sqrt{5}\right)^{2}.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\left(\sqrt{5}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-100\times 5}
The square of \sqrt{5} is 5.
11+\frac{31\left(30-10\sqrt{5}\right)}{900-500}
Multiply 100 and 5 to get 500.
11+\frac{31\left(30-10\sqrt{5}\right)}{400}
Subtract 500 from 900 to get 400.
\frac{11\times 400}{400}+\frac{31\left(30-10\sqrt{5}\right)}{400}
To add or subtract expressions, expand them to make their denominators the same. Multiply 11 times \frac{400}{400}.
\frac{11\times 400+31\left(30-10\sqrt{5}\right)}{400}
Since \frac{11\times 400}{400} and \frac{31\left(30-10\sqrt{5}\right)}{400} have the same denominator, add them by adding their numerators.
\frac{4400+930-310\sqrt{5}}{400}
Do the multiplications in 11\times 400+31\left(30-10\sqrt{5}\right).
\frac{5330-310\sqrt{5}}{400}
Do the calculations in 4400+930-310\sqrt{5}.