Solve for x
\left\{\begin{matrix}x=-\frac{2y-21}{10z}\text{, }&z\neq 0\\x\in \mathrm{R}\text{, }&y=\frac{21}{2}\text{ and }z=0\end{matrix}\right.
Solve for y
y=\frac{21}{2}-5xz
Share
Copied to clipboard
10y+50xz=105
Multiply 5 and 10 to get 50.
50xz=105-10y
Subtract 10y from both sides.
50zx=105-10y
The equation is in standard form.
\frac{50zx}{50z}=\frac{105-10y}{50z}
Divide both sides by 50z.
x=\frac{105-10y}{50z}
Dividing by 50z undoes the multiplication by 50z.
x=\frac{21-2y}{10z}
Divide 105-10y by 50z.
10y+50xz=105
Multiply 5 and 10 to get 50.
10y=105-50xz
Subtract 50xz from both sides.
\frac{10y}{10}=\frac{105-50xz}{10}
Divide both sides by 10.
y=\frac{105-50xz}{10}
Dividing by 10 undoes the multiplication by 10.
y=\frac{21}{2}-5xz
Divide 105-50xz by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}