Solve for x
x=\frac{\sqrt{10}}{5}+1\approx 1.632455532
x=-\frac{\sqrt{10}}{5}+1\approx 0.367544468
Graph
Share
Copied to clipboard
10x-3=5x^{2}
Subtract 3 from both sides.
10x-3-5x^{2}=0
Subtract 5x^{2} from both sides.
-5x^{2}+10x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 10 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Square 10.
x=\frac{-10±\sqrt{100+20\left(-3\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-10±\sqrt{100-60}}{2\left(-5\right)}
Multiply 20 times -3.
x=\frac{-10±\sqrt{40}}{2\left(-5\right)}
Add 100 to -60.
x=\frac{-10±2\sqrt{10}}{2\left(-5\right)}
Take the square root of 40.
x=\frac{-10±2\sqrt{10}}{-10}
Multiply 2 times -5.
x=\frac{2\sqrt{10}-10}{-10}
Now solve the equation x=\frac{-10±2\sqrt{10}}{-10} when ± is plus. Add -10 to 2\sqrt{10}.
x=-\frac{\sqrt{10}}{5}+1
Divide -10+2\sqrt{10} by -10.
x=\frac{-2\sqrt{10}-10}{-10}
Now solve the equation x=\frac{-10±2\sqrt{10}}{-10} when ± is minus. Subtract 2\sqrt{10} from -10.
x=\frac{\sqrt{10}}{5}+1
Divide -10-2\sqrt{10} by -10.
x=-\frac{\sqrt{10}}{5}+1 x=\frac{\sqrt{10}}{5}+1
The equation is now solved.
10x-5x^{2}=3
Subtract 5x^{2} from both sides.
-5x^{2}+10x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+10x}{-5}=\frac{3}{-5}
Divide both sides by -5.
x^{2}+\frac{10}{-5}x=\frac{3}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-2x=\frac{3}{-5}
Divide 10 by -5.
x^{2}-2x=-\frac{3}{5}
Divide 3 by -5.
x^{2}-2x+1=-\frac{3}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{2}{5}
Add -\frac{3}{5} to 1.
\left(x-1\right)^{2}=\frac{2}{5}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{2}{5}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{10}}{5} x-1=-\frac{\sqrt{10}}{5}
Simplify.
x=\frac{\sqrt{10}}{5}+1 x=-\frac{\sqrt{10}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}