Solve for x
x\leq -\frac{7}{10}
Graph
Share
Copied to clipboard
10x+3-5x\leq -\frac{1}{2}
Subtract 5x from both sides.
5x+3\leq -\frac{1}{2}
Combine 10x and -5x to get 5x.
5x\leq -\frac{1}{2}-3
Subtract 3 from both sides.
5x\leq -\frac{1}{2}-\frac{6}{2}
Convert 3 to fraction \frac{6}{2}.
5x\leq \frac{-1-6}{2}
Since -\frac{1}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
5x\leq -\frac{7}{2}
Subtract 6 from -1 to get -7.
x\leq \frac{-\frac{7}{2}}{5}
Divide both sides by 5. Since 5 is positive, the inequality direction remains the same.
x\leq \frac{-7}{2\times 5}
Express \frac{-\frac{7}{2}}{5} as a single fraction.
x\leq \frac{-7}{10}
Multiply 2 and 5 to get 10.
x\leq -\frac{7}{10}
Fraction \frac{-7}{10} can be rewritten as -\frac{7}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}