Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x+15-8x^{2}=24x+78
Subtract 8x^{2} from both sides.
10x+15-8x^{2}-24x=78
Subtract 24x from both sides.
-14x+15-8x^{2}=78
Combine 10x and -24x to get -14x.
-14x+15-8x^{2}-78=0
Subtract 78 from both sides.
-14x-63-8x^{2}=0
Subtract 78 from 15 to get -63.
-8x^{2}-14x-63=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-8\right)\left(-63\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -14 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-8\right)\left(-63\right)}}{2\left(-8\right)}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196+32\left(-63\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-14\right)±\sqrt{196-2016}}{2\left(-8\right)}
Multiply 32 times -63.
x=\frac{-\left(-14\right)±\sqrt{-1820}}{2\left(-8\right)}
Add 196 to -2016.
x=\frac{-\left(-14\right)±2\sqrt{455}i}{2\left(-8\right)}
Take the square root of -1820.
x=\frac{14±2\sqrt{455}i}{2\left(-8\right)}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{455}i}{-16}
Multiply 2 times -8.
x=\frac{14+2\sqrt{455}i}{-16}
Now solve the equation x=\frac{14±2\sqrt{455}i}{-16} when ± is plus. Add 14 to 2i\sqrt{455}.
x=\frac{-\sqrt{455}i-7}{8}
Divide 14+2i\sqrt{455} by -16.
x=\frac{-2\sqrt{455}i+14}{-16}
Now solve the equation x=\frac{14±2\sqrt{455}i}{-16} when ± is minus. Subtract 2i\sqrt{455} from 14.
x=\frac{-7+\sqrt{455}i}{8}
Divide 14-2i\sqrt{455} by -16.
x=\frac{-\sqrt{455}i-7}{8} x=\frac{-7+\sqrt{455}i}{8}
The equation is now solved.
10x+15-8x^{2}=24x+78
Subtract 8x^{2} from both sides.
10x+15-8x^{2}-24x=78
Subtract 24x from both sides.
-14x+15-8x^{2}=78
Combine 10x and -24x to get -14x.
-14x-8x^{2}=78-15
Subtract 15 from both sides.
-14x-8x^{2}=63
Subtract 15 from 78 to get 63.
-8x^{2}-14x=63
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}-14x}{-8}=\frac{63}{-8}
Divide both sides by -8.
x^{2}+\left(-\frac{14}{-8}\right)x=\frac{63}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}+\frac{7}{4}x=\frac{63}{-8}
Reduce the fraction \frac{-14}{-8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{7}{4}x=-\frac{63}{8}
Divide 63 by -8.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=-\frac{63}{8}+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{63}{8}+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{455}{64}
Add -\frac{63}{8} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{8}\right)^{2}=-\frac{455}{64}
Factor x^{2}+\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{-\frac{455}{64}}
Take the square root of both sides of the equation.
x+\frac{7}{8}=\frac{\sqrt{455}i}{8} x+\frac{7}{8}=-\frac{\sqrt{455}i}{8}
Simplify.
x=\frac{-7+\sqrt{455}i}{8} x=\frac{-\sqrt{455}i-7}{8}
Subtract \frac{7}{8} from both sides of the equation.