Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{183)}\phantom{1}\\183\overline{)1098}\\\end{array}
Use the 1^{st} digit 1 from dividend 1098
\begin{array}{l}\phantom{183)}0\phantom{2}\\183\overline{)1098}\\\end{array}
Since 1 is less than 183, use the next digit 0 from dividend 1098 and add 0 to the quotient
\begin{array}{l}\phantom{183)}0\phantom{3}\\183\overline{)1098}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1098
\begin{array}{l}\phantom{183)}00\phantom{4}\\183\overline{)1098}\\\end{array}
Since 10 is less than 183, use the next digit 9 from dividend 1098 and add 0 to the quotient
\begin{array}{l}\phantom{183)}00\phantom{5}\\183\overline{)1098}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1098
\begin{array}{l}\phantom{183)}000\phantom{6}\\183\overline{)1098}\\\end{array}
Since 109 is less than 183, use the next digit 8 from dividend 1098 and add 0 to the quotient
\begin{array}{l}\phantom{183)}000\phantom{7}\\183\overline{)1098}\\\end{array}
Use the 4^{th} digit 8 from dividend 1098
\begin{array}{l}\phantom{183)}0006\phantom{8}\\183\overline{)1098}\\\phantom{183)}\underline{\phantom{}1098\phantom{}}\\\phantom{183)9999}0\\\end{array}
Find closest multiple of 183 to 1098. We see that 6 \times 183 = 1098 is the nearest. Now subtract 1098 from 1098 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 183, stop the division. The reminder is 0. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}