Evaluate
\frac{109}{30}\approx 3.633333333
Factor
\frac{109}{2 \cdot 3 \cdot 5} = 3\frac{19}{30} = 3.6333333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)109}\\\end{array}
Use the 1^{st} digit 1 from dividend 109
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)109}\\\end{array}
Since 1 is less than 30, use the next digit 0 from dividend 109 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)109}\\\end{array}
Use the 2^{nd} digit 0 from dividend 109
\begin{array}{l}\phantom{30)}00\phantom{4}\\30\overline{)109}\\\end{array}
Since 10 is less than 30, use the next digit 9 from dividend 109 and add 0 to the quotient
\begin{array}{l}\phantom{30)}00\phantom{5}\\30\overline{)109}\\\end{array}
Use the 3^{rd} digit 9 from dividend 109
\begin{array}{l}\phantom{30)}003\phantom{6}\\30\overline{)109}\\\phantom{30)}\underline{\phantom{9}90\phantom{}}\\\phantom{30)9}19\\\end{array}
Find closest multiple of 30 to 109. We see that 3 \times 30 = 90 is the nearest. Now subtract 90 from 109 to get reminder 19. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }19
Since 19 is less than 30, stop the division. The reminder is 19. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}