Solve for x
x=\frac{169\sqrt{71761}-28561}{21600}\approx 0.773663511
x=\frac{-169\sqrt{71761}-28561}{21600}\approx -3.418200548
Graph
Share
Copied to clipboard
10800x^{2}+28561x-28561=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28561±\sqrt{28561^{2}-4\times 10800\left(-28561\right)}}{2\times 10800}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10800 for a, 28561 for b, and -28561 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28561±\sqrt{815730721-4\times 10800\left(-28561\right)}}{2\times 10800}
Square 28561.
x=\frac{-28561±\sqrt{815730721-43200\left(-28561\right)}}{2\times 10800}
Multiply -4 times 10800.
x=\frac{-28561±\sqrt{815730721+1233835200}}{2\times 10800}
Multiply -43200 times -28561.
x=\frac{-28561±\sqrt{2049565921}}{2\times 10800}
Add 815730721 to 1233835200.
x=\frac{-28561±169\sqrt{71761}}{2\times 10800}
Take the square root of 2049565921.
x=\frac{-28561±169\sqrt{71761}}{21600}
Multiply 2 times 10800.
x=\frac{169\sqrt{71761}-28561}{21600}
Now solve the equation x=\frac{-28561±169\sqrt{71761}}{21600} when ± is plus. Add -28561 to 169\sqrt{71761}.
x=\frac{-169\sqrt{71761}-28561}{21600}
Now solve the equation x=\frac{-28561±169\sqrt{71761}}{21600} when ± is minus. Subtract 169\sqrt{71761} from -28561.
x=\frac{169\sqrt{71761}-28561}{21600} x=\frac{-169\sqrt{71761}-28561}{21600}
The equation is now solved.
10800x^{2}+28561x-28561=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
10800x^{2}+28561x-28561-\left(-28561\right)=-\left(-28561\right)
Add 28561 to both sides of the equation.
10800x^{2}+28561x=-\left(-28561\right)
Subtracting -28561 from itself leaves 0.
10800x^{2}+28561x=28561
Subtract -28561 from 0.
\frac{10800x^{2}+28561x}{10800}=\frac{28561}{10800}
Divide both sides by 10800.
x^{2}+\frac{28561}{10800}x=\frac{28561}{10800}
Dividing by 10800 undoes the multiplication by 10800.
x^{2}+\frac{28561}{10800}x+\left(\frac{28561}{21600}\right)^{2}=\frac{28561}{10800}+\left(\frac{28561}{21600}\right)^{2}
Divide \frac{28561}{10800}, the coefficient of the x term, by 2 to get \frac{28561}{21600}. Then add the square of \frac{28561}{21600} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{28561}{10800}x+\frac{815730721}{466560000}=\frac{28561}{10800}+\frac{815730721}{466560000}
Square \frac{28561}{21600} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{28561}{10800}x+\frac{815730721}{466560000}=\frac{2049565921}{466560000}
Add \frac{28561}{10800} to \frac{815730721}{466560000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{28561}{21600}\right)^{2}=\frac{2049565921}{466560000}
Factor x^{2}+\frac{28561}{10800}x+\frac{815730721}{466560000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{28561}{21600}\right)^{2}}=\sqrt{\frac{2049565921}{466560000}}
Take the square root of both sides of the equation.
x+\frac{28561}{21600}=\frac{169\sqrt{71761}}{21600} x+\frac{28561}{21600}=-\frac{169\sqrt{71761}}{21600}
Simplify.
x=\frac{169\sqrt{71761}-28561}{21600} x=\frac{-169\sqrt{71761}-28561}{21600}
Subtract \frac{28561}{21600} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}