Evaluate
3h
Differentiate w.r.t. h
3
Share
Copied to clipboard
10800seg\times \frac{h}{3600seg}
Cancel out 1 in both numerator and denominator.
\frac{10800h}{3600seg}seg
Express 10800\times \frac{h}{3600seg} as a single fraction.
\frac{3h}{egs}seg
Cancel out 3600 in both numerator and denominator.
\frac{3hs}{egs}eg
Express \frac{3h}{egs}s as a single fraction.
\frac{3h}{eg}eg
Cancel out s in both numerator and denominator.
\frac{3he}{eg}g
Express \frac{3h}{eg}e as a single fraction.
\frac{3h}{g}g
Cancel out e in both numerator and denominator.
3h
Cancel out g and g.
\frac{\mathrm{d}}{\mathrm{d}h}(10800seg\times \frac{h}{3600seg})
Cancel out 1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{10800h}{3600seg}seg)
Express 10800\times \frac{h}{3600seg} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3h}{egs}seg)
Cancel out 3600 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3hs}{egs}eg)
Express \frac{3h}{egs}s as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3h}{eg}eg)
Cancel out s in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3he}{eg}g)
Express \frac{3h}{eg}e as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3h}{g}g)
Cancel out e in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}h}(3h)
Cancel out g and g.
3h^{1-1}
The derivative of ax^{n} is nax^{n-1}.
3h^{0}
Subtract 1 from 1.
3\times 1
For any term t except 0, t^{0}=1.
3
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}