Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

108=x^{2}+10x
Use the distributive property to multiply x by x+10.
x^{2}+10x=108
Swap sides so that all variable terms are on the left hand side.
x^{2}+10x-108=0
Subtract 108 from both sides.
x=\frac{-10±\sqrt{10^{2}-4\left(-108\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-108\right)}}{2}
Square 10.
x=\frac{-10±\sqrt{100+432}}{2}
Multiply -4 times -108.
x=\frac{-10±\sqrt{532}}{2}
Add 100 to 432.
x=\frac{-10±2\sqrt{133}}{2}
Take the square root of 532.
x=\frac{2\sqrt{133}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{133}}{2} when ± is plus. Add -10 to 2\sqrt{133}.
x=\sqrt{133}-5
Divide -10+2\sqrt{133} by 2.
x=\frac{-2\sqrt{133}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{133}}{2} when ± is minus. Subtract 2\sqrt{133} from -10.
x=-\sqrt{133}-5
Divide -10-2\sqrt{133} by 2.
x=\sqrt{133}-5 x=-\sqrt{133}-5
The equation is now solved.
108=x^{2}+10x
Use the distributive property to multiply x by x+10.
x^{2}+10x=108
Swap sides so that all variable terms are on the left hand side.
x^{2}+10x+5^{2}=108+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=108+25
Square 5.
x^{2}+10x+25=133
Add 108 to 25.
\left(x+5\right)^{2}=133
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{133}
Take the square root of both sides of the equation.
x+5=\sqrt{133} x+5=-\sqrt{133}
Simplify.
x=\sqrt{133}-5 x=-\sqrt{133}-5
Subtract 5 from both sides of the equation.
108=x^{2}+10x
Use the distributive property to multiply x by x+10.
x^{2}+10x=108
Swap sides so that all variable terms are on the left hand side.
x^{2}+10x-108=0
Subtract 108 from both sides.
x=\frac{-10±\sqrt{10^{2}-4\left(-108\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-108\right)}}{2}
Square 10.
x=\frac{-10±\sqrt{100+432}}{2}
Multiply -4 times -108.
x=\frac{-10±\sqrt{532}}{2}
Add 100 to 432.
x=\frac{-10±2\sqrt{133}}{2}
Take the square root of 532.
x=\frac{2\sqrt{133}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{133}}{2} when ± is plus. Add -10 to 2\sqrt{133}.
x=\sqrt{133}-5
Divide -10+2\sqrt{133} by 2.
x=\frac{-2\sqrt{133}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{133}}{2} when ± is minus. Subtract 2\sqrt{133} from -10.
x=-\sqrt{133}-5
Divide -10-2\sqrt{133} by 2.
x=\sqrt{133}-5 x=-\sqrt{133}-5
The equation is now solved.
108=x^{2}+10x
Use the distributive property to multiply x by x+10.
x^{2}+10x=108
Swap sides so that all variable terms are on the left hand side.
x^{2}+10x+5^{2}=108+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=108+25
Square 5.
x^{2}+10x+25=133
Add 108 to 25.
\left(x+5\right)^{2}=133
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{133}
Take the square root of both sides of the equation.
x+5=\sqrt{133} x+5=-\sqrt{133}
Simplify.
x=\sqrt{133}-5 x=-\sqrt{133}-5
Subtract 5 from both sides of the equation.