Evaluate
\frac{7}{2}=3.5
Factor
\frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\begin{array}{l}\phantom{306)}\phantom{1}\\306\overline{)1071}\\\end{array}
Use the 1^{st} digit 1 from dividend 1071
\begin{array}{l}\phantom{306)}0\phantom{2}\\306\overline{)1071}\\\end{array}
Since 1 is less than 306, use the next digit 0 from dividend 1071 and add 0 to the quotient
\begin{array}{l}\phantom{306)}0\phantom{3}\\306\overline{)1071}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1071
\begin{array}{l}\phantom{306)}00\phantom{4}\\306\overline{)1071}\\\end{array}
Since 10 is less than 306, use the next digit 7 from dividend 1071 and add 0 to the quotient
\begin{array}{l}\phantom{306)}00\phantom{5}\\306\overline{)1071}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1071
\begin{array}{l}\phantom{306)}000\phantom{6}\\306\overline{)1071}\\\end{array}
Since 107 is less than 306, use the next digit 1 from dividend 1071 and add 0 to the quotient
\begin{array}{l}\phantom{306)}000\phantom{7}\\306\overline{)1071}\\\end{array}
Use the 4^{th} digit 1 from dividend 1071
\begin{array}{l}\phantom{306)}0003\phantom{8}\\306\overline{)1071}\\\phantom{306)}\underline{\phantom{9}918\phantom{}}\\\phantom{306)9}153\\\end{array}
Find closest multiple of 306 to 1071. We see that 3 \times 306 = 918 is the nearest. Now subtract 918 from 1071 to get reminder 153. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }153
Since 153 is less than 306, stop the division. The reminder is 153. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}