Evaluate
\frac{53}{9}\approx 5.888888889
Factor
\frac{53}{3 ^ {2}} = 5\frac{8}{9} = 5.888888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)1060}\\\end{array}
Use the 1^{st} digit 1 from dividend 1060
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)1060}\\\end{array}
Since 1 is less than 180, use the next digit 0 from dividend 1060 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)1060}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1060
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)1060}\\\end{array}
Since 10 is less than 180, use the next digit 6 from dividend 1060 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)1060}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1060
\begin{array}{l}\phantom{180)}000\phantom{6}\\180\overline{)1060}\\\end{array}
Since 106 is less than 180, use the next digit 0 from dividend 1060 and add 0 to the quotient
\begin{array}{l}\phantom{180)}000\phantom{7}\\180\overline{)1060}\\\end{array}
Use the 4^{th} digit 0 from dividend 1060
\begin{array}{l}\phantom{180)}0005\phantom{8}\\180\overline{)1060}\\\phantom{180)}\underline{\phantom{9}900\phantom{}}\\\phantom{180)9}160\\\end{array}
Find closest multiple of 180 to 1060. We see that 5 \times 180 = 900 is the nearest. Now subtract 900 from 1060 to get reminder 160. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }160
Since 160 is less than 180, stop the division. The reminder is 160. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}