Evaluate
\frac{105836}{3595}\approx 29.439777469
Factor
\frac{2 ^ {2} \cdot 26459}{5 \cdot 719} = 29\frac{1581}{3595} = 29.439777468706538
Share
Copied to clipboard
\begin{array}{l}\phantom{3595)}\phantom{1}\\3595\overline{)105836}\\\end{array}
Use the 1^{st} digit 1 from dividend 105836
\begin{array}{l}\phantom{3595)}0\phantom{2}\\3595\overline{)105836}\\\end{array}
Since 1 is less than 3595, use the next digit 0 from dividend 105836 and add 0 to the quotient
\begin{array}{l}\phantom{3595)}0\phantom{3}\\3595\overline{)105836}\\\end{array}
Use the 2^{nd} digit 0 from dividend 105836
\begin{array}{l}\phantom{3595)}00\phantom{4}\\3595\overline{)105836}\\\end{array}
Since 10 is less than 3595, use the next digit 5 from dividend 105836 and add 0 to the quotient
\begin{array}{l}\phantom{3595)}00\phantom{5}\\3595\overline{)105836}\\\end{array}
Use the 3^{rd} digit 5 from dividend 105836
\begin{array}{l}\phantom{3595)}000\phantom{6}\\3595\overline{)105836}\\\end{array}
Since 105 is less than 3595, use the next digit 8 from dividend 105836 and add 0 to the quotient
\begin{array}{l}\phantom{3595)}000\phantom{7}\\3595\overline{)105836}\\\end{array}
Use the 4^{th} digit 8 from dividend 105836
\begin{array}{l}\phantom{3595)}0000\phantom{8}\\3595\overline{)105836}\\\end{array}
Since 1058 is less than 3595, use the next digit 3 from dividend 105836 and add 0 to the quotient
\begin{array}{l}\phantom{3595)}0000\phantom{9}\\3595\overline{)105836}\\\end{array}
Use the 5^{th} digit 3 from dividend 105836
\begin{array}{l}\phantom{3595)}00002\phantom{10}\\3595\overline{)105836}\\\phantom{3595)}\underline{\phantom{9}7190\phantom{9}}\\\phantom{3595)9}3393\\\end{array}
Find closest multiple of 3595 to 10583. We see that 2 \times 3595 = 7190 is the nearest. Now subtract 7190 from 10583 to get reminder 3393. Add 2 to quotient.
\begin{array}{l}\phantom{3595)}00002\phantom{11}\\3595\overline{)105836}\\\phantom{3595)}\underline{\phantom{9}7190\phantom{9}}\\\phantom{3595)9}33936\\\end{array}
Use the 6^{th} digit 6 from dividend 105836
\begin{array}{l}\phantom{3595)}000029\phantom{12}\\3595\overline{)105836}\\\phantom{3595)}\underline{\phantom{9}7190\phantom{9}}\\\phantom{3595)9}33936\\\phantom{3595)}\underline{\phantom{9}32355\phantom{}}\\\phantom{3595)99}1581\\\end{array}
Find closest multiple of 3595 to 33936. We see that 9 \times 3595 = 32355 is the nearest. Now subtract 32355 from 33936 to get reminder 1581. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }1581
Since 1581 is less than 3595, stop the division. The reminder is 1581. The topmost line 000029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}