Evaluate
\frac{1053}{124}\approx 8.491935484
Factor
\frac{3 ^ {4} \cdot 13}{2 ^ {2} \cdot 31} = 8\frac{61}{124} = 8.491935483870968
Share
Copied to clipboard
\begin{array}{l}\phantom{124)}\phantom{1}\\124\overline{)1053}\\\end{array}
Use the 1^{st} digit 1 from dividend 1053
\begin{array}{l}\phantom{124)}0\phantom{2}\\124\overline{)1053}\\\end{array}
Since 1 is less than 124, use the next digit 0 from dividend 1053 and add 0 to the quotient
\begin{array}{l}\phantom{124)}0\phantom{3}\\124\overline{)1053}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1053
\begin{array}{l}\phantom{124)}00\phantom{4}\\124\overline{)1053}\\\end{array}
Since 10 is less than 124, use the next digit 5 from dividend 1053 and add 0 to the quotient
\begin{array}{l}\phantom{124)}00\phantom{5}\\124\overline{)1053}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1053
\begin{array}{l}\phantom{124)}000\phantom{6}\\124\overline{)1053}\\\end{array}
Since 105 is less than 124, use the next digit 3 from dividend 1053 and add 0 to the quotient
\begin{array}{l}\phantom{124)}000\phantom{7}\\124\overline{)1053}\\\end{array}
Use the 4^{th} digit 3 from dividend 1053
\begin{array}{l}\phantom{124)}0008\phantom{8}\\124\overline{)1053}\\\phantom{124)}\underline{\phantom{9}992\phantom{}}\\\phantom{124)99}61\\\end{array}
Find closest multiple of 124 to 1053. We see that 8 \times 124 = 992 is the nearest. Now subtract 992 from 1053 to get reminder 61. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }61
Since 61 is less than 124, stop the division. The reminder is 61. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}