Evaluate
\frac{10523}{60}\approx 175.383333333
Factor
\frac{17 \cdot 619}{2 ^ {2} \cdot 3 \cdot 5} = 175\frac{23}{60} = 175.38333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)10523}\\\end{array}
Use the 1^{st} digit 1 from dividend 10523
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)10523}\\\end{array}
Since 1 is less than 60, use the next digit 0 from dividend 10523 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)10523}\\\end{array}
Use the 2^{nd} digit 0 from dividend 10523
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)10523}\\\end{array}
Since 10 is less than 60, use the next digit 5 from dividend 10523 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)10523}\\\end{array}
Use the 3^{rd} digit 5 from dividend 10523
\begin{array}{l}\phantom{60)}001\phantom{6}\\60\overline{)10523}\\\phantom{60)}\underline{\phantom{9}60\phantom{99}}\\\phantom{60)9}45\\\end{array}
Find closest multiple of 60 to 105. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 105 to get reminder 45. Add 1 to quotient.
\begin{array}{l}\phantom{60)}001\phantom{7}\\60\overline{)10523}\\\phantom{60)}\underline{\phantom{9}60\phantom{99}}\\\phantom{60)9}452\\\end{array}
Use the 4^{th} digit 2 from dividend 10523
\begin{array}{l}\phantom{60)}0017\phantom{8}\\60\overline{)10523}\\\phantom{60)}\underline{\phantom{9}60\phantom{99}}\\\phantom{60)9}452\\\phantom{60)}\underline{\phantom{9}420\phantom{9}}\\\phantom{60)99}32\\\end{array}
Find closest multiple of 60 to 452. We see that 7 \times 60 = 420 is the nearest. Now subtract 420 from 452 to get reminder 32. Add 7 to quotient.
\begin{array}{l}\phantom{60)}0017\phantom{9}\\60\overline{)10523}\\\phantom{60)}\underline{\phantom{9}60\phantom{99}}\\\phantom{60)9}452\\\phantom{60)}\underline{\phantom{9}420\phantom{9}}\\\phantom{60)99}323\\\end{array}
Use the 5^{th} digit 3 from dividend 10523
\begin{array}{l}\phantom{60)}00175\phantom{10}\\60\overline{)10523}\\\phantom{60)}\underline{\phantom{9}60\phantom{99}}\\\phantom{60)9}452\\\phantom{60)}\underline{\phantom{9}420\phantom{9}}\\\phantom{60)99}323\\\phantom{60)}\underline{\phantom{99}300\phantom{}}\\\phantom{60)999}23\\\end{array}
Find closest multiple of 60 to 323. We see that 5 \times 60 = 300 is the nearest. Now subtract 300 from 323 to get reminder 23. Add 5 to quotient.
\text{Quotient: }175 \text{Reminder: }23
Since 23 is less than 60, stop the division. The reminder is 23. The topmost line 00175 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 175.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}