Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

105x^{2}-40x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 105\left(-4\right)}}{2\times 105}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 105 for a, -40 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 105\left(-4\right)}}{2\times 105}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-420\left(-4\right)}}{2\times 105}
Multiply -4 times 105.
x=\frac{-\left(-40\right)±\sqrt{1600+1680}}{2\times 105}
Multiply -420 times -4.
x=\frac{-\left(-40\right)±\sqrt{3280}}{2\times 105}
Add 1600 to 1680.
x=\frac{-\left(-40\right)±4\sqrt{205}}{2\times 105}
Take the square root of 3280.
x=\frac{40±4\sqrt{205}}{2\times 105}
The opposite of -40 is 40.
x=\frac{40±4\sqrt{205}}{210}
Multiply 2 times 105.
x=\frac{4\sqrt{205}+40}{210}
Now solve the equation x=\frac{40±4\sqrt{205}}{210} when ± is plus. Add 40 to 4\sqrt{205}.
x=\frac{2\sqrt{205}}{105}+\frac{4}{21}
Divide 40+4\sqrt{205} by 210.
x=\frac{40-4\sqrt{205}}{210}
Now solve the equation x=\frac{40±4\sqrt{205}}{210} when ± is minus. Subtract 4\sqrt{205} from 40.
x=-\frac{2\sqrt{205}}{105}+\frac{4}{21}
Divide 40-4\sqrt{205} by 210.
x=\frac{2\sqrt{205}}{105}+\frac{4}{21} x=-\frac{2\sqrt{205}}{105}+\frac{4}{21}
The equation is now solved.
105x^{2}-40x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
105x^{2}-40x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
105x^{2}-40x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
105x^{2}-40x=4
Subtract -4 from 0.
\frac{105x^{2}-40x}{105}=\frac{4}{105}
Divide both sides by 105.
x^{2}+\left(-\frac{40}{105}\right)x=\frac{4}{105}
Dividing by 105 undoes the multiplication by 105.
x^{2}-\frac{8}{21}x=\frac{4}{105}
Reduce the fraction \frac{-40}{105} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{8}{21}x+\left(-\frac{4}{21}\right)^{2}=\frac{4}{105}+\left(-\frac{4}{21}\right)^{2}
Divide -\frac{8}{21}, the coefficient of the x term, by 2 to get -\frac{4}{21}. Then add the square of -\frac{4}{21} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{21}x+\frac{16}{441}=\frac{4}{105}+\frac{16}{441}
Square -\frac{4}{21} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{21}x+\frac{16}{441}=\frac{164}{2205}
Add \frac{4}{105} to \frac{16}{441} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{21}\right)^{2}=\frac{164}{2205}
Factor x^{2}-\frac{8}{21}x+\frac{16}{441}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{21}\right)^{2}}=\sqrt{\frac{164}{2205}}
Take the square root of both sides of the equation.
x-\frac{4}{21}=\frac{2\sqrt{205}}{105} x-\frac{4}{21}=-\frac{2\sqrt{205}}{105}
Simplify.
x=\frac{2\sqrt{205}}{105}+\frac{4}{21} x=-\frac{2\sqrt{205}}{105}+\frac{4}{21}
Add \frac{4}{21} to both sides of the equation.