Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

10480.05+\frac{77}{35}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Multiply 105 and 99.81 to get 10480.05.
10480.05+\frac{11}{5}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Reduce the fraction \frac{77}{35} to lowest terms by extracting and canceling out 7.
\frac{209601}{20}+\frac{11}{5}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Convert decimal number 10480.05 to fraction \frac{1048005}{100}. Reduce the fraction \frac{1048005}{100} to lowest terms by extracting and canceling out 5.
\frac{209601}{20}+\frac{44}{20}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Least common multiple of 20 and 5 is 20. Convert \frac{209601}{20} and \frac{11}{5} to fractions with denominator 20.
\frac{209601+44}{20}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Since \frac{209601}{20} and \frac{44}{20} have the same denominator, add them by adding their numerators.
\frac{209645}{20}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Add 209601 and 44 to get 209645.
\frac{41929}{4}+3-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Reduce the fraction \frac{209645}{20} to lowest terms by extracting and canceling out 5.
\frac{41929}{4}+\frac{12}{4}-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Convert 3 to fraction \frac{12}{4}.
\frac{41929+12}{4}-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Since \frac{41929}{4} and \frac{12}{4} have the same denominator, add them by adding their numerators.
\frac{41941}{4}-8\times \frac{1}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Add 41929 and 12 to get 41941.
\frac{41941}{4}-\frac{8}{5}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Multiply 8 and \frac{1}{5} to get \frac{8}{5}.
\frac{209705}{20}-\frac{32}{20}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Least common multiple of 4 and 5 is 20. Convert \frac{41941}{4} and \frac{8}{5} to fractions with denominator 20.
\frac{209705-32}{20}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Since \frac{209705}{20} and \frac{32}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{209673}{20}+\left(\frac{7}{8}\right)^{2}\left(-\left(3-5+10.25\right)\right)
Subtract 32 from 209705 to get 209673.
\frac{209673}{20}+\frac{49}{64}\left(-\left(3-5+10.25\right)\right)
Calculate \frac{7}{8} to the power of 2 and get \frac{49}{64}.
\frac{209673}{20}+\frac{49}{64}\left(-\left(-2+10.25\right)\right)
Subtract 5 from 3 to get -2.
\frac{209673}{20}+\frac{49}{64}\left(-8.25\right)
Add -2 and 10.25 to get 8.25.
\frac{209673}{20}+\frac{49}{64}\left(-\frac{33}{4}\right)
Convert decimal number -8.25 to fraction -\frac{825}{100}. Reduce the fraction -\frac{825}{100} to lowest terms by extracting and canceling out 25.
\frac{209673}{20}+\frac{49\left(-33\right)}{64\times 4}
Multiply \frac{49}{64} times -\frac{33}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{209673}{20}+\frac{-1617}{256}
Do the multiplications in the fraction \frac{49\left(-33\right)}{64\times 4}.
\frac{209673}{20}-\frac{1617}{256}
Fraction \frac{-1617}{256} can be rewritten as -\frac{1617}{256} by extracting the negative sign.
\frac{13419072}{1280}-\frac{8085}{1280}
Least common multiple of 20 and 256 is 1280. Convert \frac{209673}{20} and \frac{1617}{256} to fractions with denominator 1280.
\frac{13419072-8085}{1280}
Since \frac{13419072}{1280} and \frac{8085}{1280} have the same denominator, subtract them by subtracting their numerators.
\frac{13410987}{1280}
Subtract 8085 from 13419072 to get 13410987.