Solve for x
x = \frac{21 \sqrt{1105}}{221} \approx 3.158698397
x = -\frac{21 \sqrt{1105}}{221} \approx -3.158698397
Graph
Share
Copied to clipboard
11025=\left(9x\right)^{2}+\left(32x\right)^{2}
Calculate 105 to the power of 2 and get 11025.
11025=9^{2}x^{2}+\left(32x\right)^{2}
Expand \left(9x\right)^{2}.
11025=81x^{2}+\left(32x\right)^{2}
Calculate 9 to the power of 2 and get 81.
11025=81x^{2}+32^{2}x^{2}
Expand \left(32x\right)^{2}.
11025=81x^{2}+1024x^{2}
Calculate 32 to the power of 2 and get 1024.
11025=1105x^{2}
Combine 81x^{2} and 1024x^{2} to get 1105x^{2}.
1105x^{2}=11025
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{11025}{1105}
Divide both sides by 1105.
x^{2}=\frac{2205}{221}
Reduce the fraction \frac{11025}{1105} to lowest terms by extracting and canceling out 5.
x=\frac{21\sqrt{1105}}{221} x=-\frac{21\sqrt{1105}}{221}
Take the square root of both sides of the equation.
11025=\left(9x\right)^{2}+\left(32x\right)^{2}
Calculate 105 to the power of 2 and get 11025.
11025=9^{2}x^{2}+\left(32x\right)^{2}
Expand \left(9x\right)^{2}.
11025=81x^{2}+\left(32x\right)^{2}
Calculate 9 to the power of 2 and get 81.
11025=81x^{2}+32^{2}x^{2}
Expand \left(32x\right)^{2}.
11025=81x^{2}+1024x^{2}
Calculate 32 to the power of 2 and get 1024.
11025=1105x^{2}
Combine 81x^{2} and 1024x^{2} to get 1105x^{2}.
1105x^{2}=11025
Swap sides so that all variable terms are on the left hand side.
1105x^{2}-11025=0
Subtract 11025 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 1105\left(-11025\right)}}{2\times 1105}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1105 for a, 0 for b, and -11025 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1105\left(-11025\right)}}{2\times 1105}
Square 0.
x=\frac{0±\sqrt{-4420\left(-11025\right)}}{2\times 1105}
Multiply -4 times 1105.
x=\frac{0±\sqrt{48730500}}{2\times 1105}
Multiply -4420 times -11025.
x=\frac{0±210\sqrt{1105}}{2\times 1105}
Take the square root of 48730500.
x=\frac{0±210\sqrt{1105}}{2210}
Multiply 2 times 1105.
x=\frac{21\sqrt{1105}}{221}
Now solve the equation x=\frac{0±210\sqrt{1105}}{2210} when ± is plus.
x=-\frac{21\sqrt{1105}}{221}
Now solve the equation x=\frac{0±210\sqrt{1105}}{2210} when ± is minus.
x=\frac{21\sqrt{1105}}{221} x=-\frac{21\sqrt{1105}}{221}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}