Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

8\left(13t-2t^{2}\right)
Factor out 8.
t\left(13-2t\right)
Consider 13t-2t^{2}. Factor out t.
8t\left(-2t+13\right)
Rewrite the complete factored expression.
-16t^{2}+104t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-104±\sqrt{104^{2}}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-104±104}{2\left(-16\right)}
Take the square root of 104^{2}.
t=\frac{-104±104}{-32}
Multiply 2 times -16.
t=\frac{0}{-32}
Now solve the equation t=\frac{-104±104}{-32} when ± is plus. Add -104 to 104.
t=0
Divide 0 by -32.
t=-\frac{208}{-32}
Now solve the equation t=\frac{-104±104}{-32} when ± is minus. Subtract 104 from -104.
t=\frac{13}{2}
Reduce the fraction \frac{-208}{-32} to lowest terms by extracting and canceling out 16.
-16t^{2}+104t=-16t\left(t-\frac{13}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{13}{2} for x_{2}.
-16t^{2}+104t=-16t\times \frac{-2t+13}{-2}
Subtract \frac{13}{2} from t by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-16t^{2}+104t=8t\left(-2t+13\right)
Cancel out 2, the greatest common factor in -16 and -2.