Solve for x
x = \frac{2 \sqrt{12842} + 258}{131} \approx 3.699580893
x=\frac{258-2\sqrt{12842}}{131}\approx 0.239350404
Graph
Share
Copied to clipboard
1042x-262x^{2}-232=10x
Subtract 232 from both sides.
1042x-262x^{2}-232-10x=0
Subtract 10x from both sides.
1032x-262x^{2}-232=0
Combine 1042x and -10x to get 1032x.
-262x^{2}+1032x-232=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1032±\sqrt{1032^{2}-4\left(-262\right)\left(-232\right)}}{2\left(-262\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -262 for a, 1032 for b, and -232 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1032±\sqrt{1065024-4\left(-262\right)\left(-232\right)}}{2\left(-262\right)}
Square 1032.
x=\frac{-1032±\sqrt{1065024+1048\left(-232\right)}}{2\left(-262\right)}
Multiply -4 times -262.
x=\frac{-1032±\sqrt{1065024-243136}}{2\left(-262\right)}
Multiply 1048 times -232.
x=\frac{-1032±\sqrt{821888}}{2\left(-262\right)}
Add 1065024 to -243136.
x=\frac{-1032±8\sqrt{12842}}{2\left(-262\right)}
Take the square root of 821888.
x=\frac{-1032±8\sqrt{12842}}{-524}
Multiply 2 times -262.
x=\frac{8\sqrt{12842}-1032}{-524}
Now solve the equation x=\frac{-1032±8\sqrt{12842}}{-524} when ± is plus. Add -1032 to 8\sqrt{12842}.
x=\frac{258-2\sqrt{12842}}{131}
Divide -1032+8\sqrt{12842} by -524.
x=\frac{-8\sqrt{12842}-1032}{-524}
Now solve the equation x=\frac{-1032±8\sqrt{12842}}{-524} when ± is minus. Subtract 8\sqrt{12842} from -1032.
x=\frac{2\sqrt{12842}+258}{131}
Divide -1032-8\sqrt{12842} by -524.
x=\frac{258-2\sqrt{12842}}{131} x=\frac{2\sqrt{12842}+258}{131}
The equation is now solved.
1042x-262x^{2}-10x=232
Subtract 10x from both sides.
1032x-262x^{2}=232
Combine 1042x and -10x to get 1032x.
-262x^{2}+1032x=232
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-262x^{2}+1032x}{-262}=\frac{232}{-262}
Divide both sides by -262.
x^{2}+\frac{1032}{-262}x=\frac{232}{-262}
Dividing by -262 undoes the multiplication by -262.
x^{2}-\frac{516}{131}x=\frac{232}{-262}
Reduce the fraction \frac{1032}{-262} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{516}{131}x=-\frac{116}{131}
Reduce the fraction \frac{232}{-262} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{516}{131}x+\left(-\frac{258}{131}\right)^{2}=-\frac{116}{131}+\left(-\frac{258}{131}\right)^{2}
Divide -\frac{516}{131}, the coefficient of the x term, by 2 to get -\frac{258}{131}. Then add the square of -\frac{258}{131} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{516}{131}x+\frac{66564}{17161}=-\frac{116}{131}+\frac{66564}{17161}
Square -\frac{258}{131} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{516}{131}x+\frac{66564}{17161}=\frac{51368}{17161}
Add -\frac{116}{131} to \frac{66564}{17161} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{258}{131}\right)^{2}=\frac{51368}{17161}
Factor x^{2}-\frac{516}{131}x+\frac{66564}{17161}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{258}{131}\right)^{2}}=\sqrt{\frac{51368}{17161}}
Take the square root of both sides of the equation.
x-\frac{258}{131}=\frac{2\sqrt{12842}}{131} x-\frac{258}{131}=-\frac{2\sqrt{12842}}{131}
Simplify.
x=\frac{2\sqrt{12842}+258}{131} x=\frac{258-2\sqrt{12842}}{131}
Add \frac{258}{131} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}