Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{260)}\phantom{1}\\260\overline{)1040}\\\end{array}
Use the 1^{st} digit 1 from dividend 1040
\begin{array}{l}\phantom{260)}0\phantom{2}\\260\overline{)1040}\\\end{array}
Since 1 is less than 260, use the next digit 0 from dividend 1040 and add 0 to the quotient
\begin{array}{l}\phantom{260)}0\phantom{3}\\260\overline{)1040}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1040
\begin{array}{l}\phantom{260)}00\phantom{4}\\260\overline{)1040}\\\end{array}
Since 10 is less than 260, use the next digit 4 from dividend 1040 and add 0 to the quotient
\begin{array}{l}\phantom{260)}00\phantom{5}\\260\overline{)1040}\\\end{array}
Use the 3^{rd} digit 4 from dividend 1040
\begin{array}{l}\phantom{260)}000\phantom{6}\\260\overline{)1040}\\\end{array}
Since 104 is less than 260, use the next digit 0 from dividend 1040 and add 0 to the quotient
\begin{array}{l}\phantom{260)}000\phantom{7}\\260\overline{)1040}\\\end{array}
Use the 4^{th} digit 0 from dividend 1040
\begin{array}{l}\phantom{260)}0004\phantom{8}\\260\overline{)1040}\\\phantom{260)}\underline{\phantom{}1040\phantom{}}\\\phantom{260)9999}0\\\end{array}
Find closest multiple of 260 to 1040. We see that 4 \times 260 = 1040 is the nearest. Now subtract 1040 from 1040 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 260, stop the division. The reminder is 0. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}