Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)104}\\\end{array}
Use the 1^{st} digit 1 from dividend 104
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)104}\\\end{array}
Since 1 is less than 13, use the next digit 0 from dividend 104 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)104}\\\end{array}
Use the 2^{nd} digit 0 from dividend 104
\begin{array}{l}\phantom{13)}00\phantom{4}\\13\overline{)104}\\\end{array}
Since 10 is less than 13, use the next digit 4 from dividend 104 and add 0 to the quotient
\begin{array}{l}\phantom{13)}00\phantom{5}\\13\overline{)104}\\\end{array}
Use the 3^{rd} digit 4 from dividend 104
\begin{array}{l}\phantom{13)}008\phantom{6}\\13\overline{)104}\\\phantom{13)}\underline{\phantom{}104\phantom{}}\\\phantom{13)999}0\\\end{array}
Find closest multiple of 13 to 104. We see that 8 \times 13 = 104 is the nearest. Now subtract 104 from 104 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 13, stop the division. The reminder is 0. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}