Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

104\times 2=v\left(v-3\right)
Multiply both sides by 2.
208=v\left(v-3\right)
Multiply 104 and 2 to get 208.
208=v^{2}-3v
Use the distributive property to multiply v by v-3.
v^{2}-3v=208
Swap sides so that all variable terms are on the left hand side.
v^{2}-3v-208=0
Subtract 208 from both sides.
v=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-208\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -208 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-3\right)±\sqrt{9-4\left(-208\right)}}{2}
Square -3.
v=\frac{-\left(-3\right)±\sqrt{9+832}}{2}
Multiply -4 times -208.
v=\frac{-\left(-3\right)±\sqrt{841}}{2}
Add 9 to 832.
v=\frac{-\left(-3\right)±29}{2}
Take the square root of 841.
v=\frac{3±29}{2}
The opposite of -3 is 3.
v=\frac{32}{2}
Now solve the equation v=\frac{3±29}{2} when ± is plus. Add 3 to 29.
v=16
Divide 32 by 2.
v=-\frac{26}{2}
Now solve the equation v=\frac{3±29}{2} when ± is minus. Subtract 29 from 3.
v=-13
Divide -26 by 2.
v=16 v=-13
The equation is now solved.
104\times 2=v\left(v-3\right)
Multiply both sides by 2.
208=v\left(v-3\right)
Multiply 104 and 2 to get 208.
208=v^{2}-3v
Use the distributive property to multiply v by v-3.
v^{2}-3v=208
Swap sides so that all variable terms are on the left hand side.
v^{2}-3v+\left(-\frac{3}{2}\right)^{2}=208+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-3v+\frac{9}{4}=208+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
v^{2}-3v+\frac{9}{4}=\frac{841}{4}
Add 208 to \frac{9}{4}.
\left(v-\frac{3}{2}\right)^{2}=\frac{841}{4}
Factor v^{2}-3v+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-\frac{3}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
Take the square root of both sides of the equation.
v-\frac{3}{2}=\frac{29}{2} v-\frac{3}{2}=-\frac{29}{2}
Simplify.
v=16 v=-13
Add \frac{3}{2} to both sides of the equation.