Evaluate
\frac{256}{125}=2.048
Factor
\frac{2 ^ {8}}{5 ^ {3}} = 2\frac{6}{125} = 2.048
Share
Copied to clipboard
\begin{array}{l}\phantom{500)}\phantom{1}\\500\overline{)1024}\\\end{array}
Use the 1^{st} digit 1 from dividend 1024
\begin{array}{l}\phantom{500)}0\phantom{2}\\500\overline{)1024}\\\end{array}
Since 1 is less than 500, use the next digit 0 from dividend 1024 and add 0 to the quotient
\begin{array}{l}\phantom{500)}0\phantom{3}\\500\overline{)1024}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1024
\begin{array}{l}\phantom{500)}00\phantom{4}\\500\overline{)1024}\\\end{array}
Since 10 is less than 500, use the next digit 2 from dividend 1024 and add 0 to the quotient
\begin{array}{l}\phantom{500)}00\phantom{5}\\500\overline{)1024}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1024
\begin{array}{l}\phantom{500)}000\phantom{6}\\500\overline{)1024}\\\end{array}
Since 102 is less than 500, use the next digit 4 from dividend 1024 and add 0 to the quotient
\begin{array}{l}\phantom{500)}000\phantom{7}\\500\overline{)1024}\\\end{array}
Use the 4^{th} digit 4 from dividend 1024
\begin{array}{l}\phantom{500)}0002\phantom{8}\\500\overline{)1024}\\\phantom{500)}\underline{\phantom{}1000\phantom{}}\\\phantom{500)99}24\\\end{array}
Find closest multiple of 500 to 1024. We see that 2 \times 500 = 1000 is the nearest. Now subtract 1000 from 1024 to get reminder 24. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }24
Since 24 is less than 500, stop the division. The reminder is 24. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}