Evaluate
\frac{51032990}{367}\approx 139054.46866485
Factor
\frac{2 \cdot 5 \cdot 37 \cdot 137927}{367} = 139054\frac{172}{367} = 139054.46866485014
Share
Copied to clipboard
\begin{array}{l}\phantom{734)}\phantom{1}\\734\overline{)102065980}\\\end{array}
Use the 1^{st} digit 1 from dividend 102065980
\begin{array}{l}\phantom{734)}0\phantom{2}\\734\overline{)102065980}\\\end{array}
Since 1 is less than 734, use the next digit 0 from dividend 102065980 and add 0 to the quotient
\begin{array}{l}\phantom{734)}0\phantom{3}\\734\overline{)102065980}\\\end{array}
Use the 2^{nd} digit 0 from dividend 102065980
\begin{array}{l}\phantom{734)}00\phantom{4}\\734\overline{)102065980}\\\end{array}
Since 10 is less than 734, use the next digit 2 from dividend 102065980 and add 0 to the quotient
\begin{array}{l}\phantom{734)}00\phantom{5}\\734\overline{)102065980}\\\end{array}
Use the 3^{rd} digit 2 from dividend 102065980
\begin{array}{l}\phantom{734)}000\phantom{6}\\734\overline{)102065980}\\\end{array}
Since 102 is less than 734, use the next digit 0 from dividend 102065980 and add 0 to the quotient
\begin{array}{l}\phantom{734)}000\phantom{7}\\734\overline{)102065980}\\\end{array}
Use the 4^{th} digit 0 from dividend 102065980
\begin{array}{l}\phantom{734)}0001\phantom{8}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}286\\\end{array}
Find closest multiple of 734 to 1020. We see that 1 \times 734 = 734 is the nearest. Now subtract 734 from 1020 to get reminder 286. Add 1 to quotient.
\begin{array}{l}\phantom{734)}0001\phantom{9}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\end{array}
Use the 5^{th} digit 6 from dividend 102065980
\begin{array}{l}\phantom{734)}00013\phantom{10}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}664\\\end{array}
Find closest multiple of 734 to 2866. We see that 3 \times 734 = 2202 is the nearest. Now subtract 2202 from 2866 to get reminder 664. Add 3 to quotient.
\begin{array}{l}\phantom{734)}00013\phantom{11}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\end{array}
Use the 6^{th} digit 5 from dividend 102065980
\begin{array}{l}\phantom{734)}000139\phantom{12}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}39\\\end{array}
Find closest multiple of 734 to 6645. We see that 9 \times 734 = 6606 is the nearest. Now subtract 6606 from 6645 to get reminder 39. Add 9 to quotient.
\begin{array}{l}\phantom{734)}000139\phantom{13}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}399\\\end{array}
Use the 7^{th} digit 9 from dividend 102065980
\begin{array}{l}\phantom{734)}0001390\phantom{14}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}399\\\end{array}
Since 399 is less than 734, use the next digit 8 from dividend 102065980 and add 0 to the quotient
\begin{array}{l}\phantom{734)}0001390\phantom{15}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}3998\\\end{array}
Use the 8^{th} digit 8 from dividend 102065980
\begin{array}{l}\phantom{734)}00013905\phantom{16}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}3998\\\phantom{734)}\underline{\phantom{9999}3670\phantom{9}}\\\phantom{734)99999}328\\\end{array}
Find closest multiple of 734 to 3998. We see that 5 \times 734 = 3670 is the nearest. Now subtract 3670 from 3998 to get reminder 328. Add 5 to quotient.
\begin{array}{l}\phantom{734)}00013905\phantom{17}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}3998\\\phantom{734)}\underline{\phantom{9999}3670\phantom{9}}\\\phantom{734)99999}3280\\\end{array}
Use the 9^{th} digit 0 from dividend 102065980
\begin{array}{l}\phantom{734)}000139054\phantom{18}\\734\overline{)102065980}\\\phantom{734)}\underline{\phantom{9}734\phantom{99999}}\\\phantom{734)9}2866\\\phantom{734)}\underline{\phantom{9}2202\phantom{9999}}\\\phantom{734)99}6645\\\phantom{734)}\underline{\phantom{99}6606\phantom{999}}\\\phantom{734)9999}3998\\\phantom{734)}\underline{\phantom{9999}3670\phantom{9}}\\\phantom{734)99999}3280\\\phantom{734)}\underline{\phantom{99999}2936\phantom{}}\\\phantom{734)999999}344\\\end{array}
Find closest multiple of 734 to 3280. We see that 4 \times 734 = 2936 is the nearest. Now subtract 2936 from 3280 to get reminder 344. Add 4 to quotient.
\text{Quotient: }139054 \text{Reminder: }344
Since 344 is less than 734, stop the division. The reminder is 344. The topmost line 000139054 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 139054.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}