Evaluate
\frac{51}{50}=1.02
Factor
\frac{3 \cdot 17}{2 \cdot 5 ^ {2}} = 1\frac{1}{50} = 1.02
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)102}\\\end{array}
Use the 1^{st} digit 1 from dividend 102
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)102}\\\end{array}
Since 1 is less than 100, use the next digit 0 from dividend 102 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)102}\\\end{array}
Use the 2^{nd} digit 0 from dividend 102
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)102}\\\end{array}
Since 10 is less than 100, use the next digit 2 from dividend 102 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)102}\\\end{array}
Use the 3^{rd} digit 2 from dividend 102
\begin{array}{l}\phantom{100)}001\phantom{6}\\100\overline{)102}\\\phantom{100)}\underline{\phantom{}100\phantom{}}\\\phantom{100)99}2\\\end{array}
Find closest multiple of 100 to 102. We see that 1 \times 100 = 100 is the nearest. Now subtract 100 from 102 to get reminder 2. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }2
Since 2 is less than 100, stop the division. The reminder is 2. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}