Evaluate
\frac{101697}{116}\approx 876.698275862
Factor
\frac{3 \cdot 109 \cdot 311}{2 ^ {2} \cdot 29} = 876\frac{81}{116} = 876.698275862069
Share
Copied to clipboard
\begin{array}{l}\phantom{116)}\phantom{1}\\116\overline{)101697}\\\end{array}
Use the 1^{st} digit 1 from dividend 101697
\begin{array}{l}\phantom{116)}0\phantom{2}\\116\overline{)101697}\\\end{array}
Since 1 is less than 116, use the next digit 0 from dividend 101697 and add 0 to the quotient
\begin{array}{l}\phantom{116)}0\phantom{3}\\116\overline{)101697}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101697
\begin{array}{l}\phantom{116)}00\phantom{4}\\116\overline{)101697}\\\end{array}
Since 10 is less than 116, use the next digit 1 from dividend 101697 and add 0 to the quotient
\begin{array}{l}\phantom{116)}00\phantom{5}\\116\overline{)101697}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101697
\begin{array}{l}\phantom{116)}000\phantom{6}\\116\overline{)101697}\\\end{array}
Since 101 is less than 116, use the next digit 6 from dividend 101697 and add 0 to the quotient
\begin{array}{l}\phantom{116)}000\phantom{7}\\116\overline{)101697}\\\end{array}
Use the 4^{th} digit 6 from dividend 101697
\begin{array}{l}\phantom{116)}0008\phantom{8}\\116\overline{)101697}\\\phantom{116)}\underline{\phantom{9}928\phantom{99}}\\\phantom{116)99}88\\\end{array}
Find closest multiple of 116 to 1016. We see that 8 \times 116 = 928 is the nearest. Now subtract 928 from 1016 to get reminder 88. Add 8 to quotient.
\begin{array}{l}\phantom{116)}0008\phantom{9}\\116\overline{)101697}\\\phantom{116)}\underline{\phantom{9}928\phantom{99}}\\\phantom{116)99}889\\\end{array}
Use the 5^{th} digit 9 from dividend 101697
\begin{array}{l}\phantom{116)}00087\phantom{10}\\116\overline{)101697}\\\phantom{116)}\underline{\phantom{9}928\phantom{99}}\\\phantom{116)99}889\\\phantom{116)}\underline{\phantom{99}812\phantom{9}}\\\phantom{116)999}77\\\end{array}
Find closest multiple of 116 to 889. We see that 7 \times 116 = 812 is the nearest. Now subtract 812 from 889 to get reminder 77. Add 7 to quotient.
\begin{array}{l}\phantom{116)}00087\phantom{11}\\116\overline{)101697}\\\phantom{116)}\underline{\phantom{9}928\phantom{99}}\\\phantom{116)99}889\\\phantom{116)}\underline{\phantom{99}812\phantom{9}}\\\phantom{116)999}777\\\end{array}
Use the 6^{th} digit 7 from dividend 101697
\begin{array}{l}\phantom{116)}000876\phantom{12}\\116\overline{)101697}\\\phantom{116)}\underline{\phantom{9}928\phantom{99}}\\\phantom{116)99}889\\\phantom{116)}\underline{\phantom{99}812\phantom{9}}\\\phantom{116)999}777\\\phantom{116)}\underline{\phantom{999}696\phantom{}}\\\phantom{116)9999}81\\\end{array}
Find closest multiple of 116 to 777. We see that 6 \times 116 = 696 is the nearest. Now subtract 696 from 777 to get reminder 81. Add 6 to quotient.
\text{Quotient: }876 \text{Reminder: }81
Since 81 is less than 116, stop the division. The reminder is 81. The topmost line 000876 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 876.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}